scholarly journals Competing Endogenous RNAs in Cervical Carcinogenesis: A New Layer of Complexity

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 991
Author(s):  
Fernanda Costa Brandão Berti ◽  
Sara Cristina Lobo-Alves ◽  
Camila de Freitas Oliveira-Toré ◽  
Amanda Salviano-Silva ◽  
Karen Brajão de Oliveira ◽  
...  

MicroRNAs (miRNAs) regulate gene expression by binding to complementary sequences within target mRNAs. Apart from working ‘solo’, miRNAs may interact in important molecular networks such as competing endogenous RNA (ceRNA) axes. By competing for a limited pool of miRNAs, transcripts such as long noncoding RNAs (lncRNAs) and mRNAs can regulate each other, fine-tuning gene expression. Several ceRNA networks led by different lncRNAs—described here as lncRNA-mediated ceRNAs—seem to play essential roles in cervical cancer (CC). By conducting an extensive search, we summarized networks involved in CC, highlighting the major impacts of such dynamic molecular changes over multiple cellular processes. Through the sponging of distinct miRNAs, some lncRNAs as HOTAIR, MALAT1, NEAT1, OIP5-AS1, and XIST trigger crucial molecular changes, ultimately increasing cell proliferation, migration, invasion, and inhibiting apoptosis. Likewise, several lncRNAs seem to be a sponge for important tumor-suppressive miRNAs (as miR-140-5p, miR-143-3p, miR-148a-3p, and miR-206), impairing such molecules from exerting a negative post-transcriptional regulation over target mRNAs. Curiously, some of the involved mRNAs code for important proteins such as PTEN, ROCK1, and MAPK1, known to modulate cell growth, proliferation, apoptosis, and adhesion in CC. Overall, we highlight important lncRNA-mediated functional interactions occurring in cervical cells and their closely related impact on cervical carcinogenesis.

2020 ◽  
Vol 21 (18) ◽  
pp. 6835
Author(s):  
Jonas Weiße ◽  
Julia Rosemann ◽  
Vanessa Krauspe ◽  
Matthias Kappler ◽  
Alexander W. Eckert ◽  
...  

Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.


2020 ◽  
Vol 21 (19) ◽  
pp. 7223 ◽  
Author(s):  
Eleni I. Theotoki ◽  
Vasiliki I. Pantazopoulou ◽  
Stella Georgiou ◽  
Panos Kakoulidis ◽  
Vicky Filippa ◽  
...  

Gene expression dictates fundamental cellular processes and its de-regulation leads to pathological conditions. A key contributor to the fine-tuning of gene expression is Dicer, an RNA-binding protein (RBPs) that forms complexes and affects transcription by acting at the post-transcriptional level via the targeting of mRNAs by Dicer-produced small non-coding RNAs. This review aims to present the contribution of Dicer protein in a wide spectrum of human pathological conditions, including cancer, neurological, autoimmune, reproductive and cardiovascular diseases, as well as viral infections. Germline mutations of Dicer have been linked to Dicer1 syndrome, a rare genetic disorder that predisposes to the development of both benign and malignant tumors, but the exact correlation of Dicer protein expression within the different cancer types is unclear, and there are contradictions in the data. Downregulation of Dicer is related to Geographic atrophy (GA), a severe eye-disease that is a leading cause of blindness in industrialized countries, as well as to psychiatric and neurological diseases such as depression and Parkinson’s disease, respectively. Both loss and upregulation of Dicer protein expression is implicated in severe autoimmune disorders, including psoriasis, ankylosing spondylitis, rheumatoid arthritis, multiple sclerosis and autoimmune thyroid diseases. Loss of Dicer contributes to cardiovascular diseases and causes defective germ cell differentiation and reproductive system abnormalities in both sexes. Dicer can also act as a strong antiviral with a crucial role in RNA-based antiviral immunity. In conclusion, Dicer is an essential enzyme for the maintenance of physiology due to its pivotal role in several cellular processes, and its loss or aberrant expression contributes to the development of severe human diseases. Further exploitation is required for the development of novel, more effective Dicer-based diagnostic and therapeutic strategies, with the goal of new clinical benefits and better quality of life for patients.


2017 ◽  
Vol 114 (50) ◽  
pp. 13296-13301 ◽  
Author(s):  
Violeta Rayon-Estrada ◽  
Dewi Harjanto ◽  
Claire E. Hamilton ◽  
Yamina A. Berchiche ◽  
Emily Conn Gantman ◽  
...  

Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3′UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells.


2019 ◽  
Vol 30 (07) ◽  
pp. 1940002
Author(s):  
Shigang Qiu ◽  
Tao Jia

Gene expression is a fundamental process in a living system. The small RNAs (sRNAs) is widely observed as a global regulator in gene expression. The inherent nonlinearity in this regulatory process together with the bursty production of messenger RNA (mRNA), sRNA and protein make the exact solution for this stochastic process intractable. This is particularly the case when quantifying the protein noise level, which has great impact on multiple cellular processes. Here, we propose an approximate yet reasonably accurate solution for the gene expression noise with infrequent burst and strong regulation by sRNAs. This analytical solution allows us to better analyze the noise and stochastic deviation of protein level. We find that the regulation amplifies the noise, reduces the protein level. The stochasticity in the regulation generates more proteins than what if the stochasticity is removed from the system. The sRNA level is most important to the relationship between the noise and stochastic deviation. The results provide analytical tools for more general studies of gene expression and strengthen our quantitative understandings of post-transcriptional regulation in controlling gene expression processes.


2015 ◽  
Vol 70 (5) ◽  
pp. 541-548 ◽  
Author(s):  
T. A. Grebennikova ◽  
Zh. E. Belaya ◽  
L. Ya. Rozhinskaya ◽  
G. A. Mel'nichenko ◽  
I. I. Dedov

This review describes the epigenetic regulation of osteoblastogenesis and osteoclastogenesis and its future implementation in the diagnosis and treatment of osteoporosis. A considerable part of the review is dedicated to the microRNAs (miRNAs). miRNAs are small regulatory factors that regulate gene expression, by post-transcriptional regulation of genes playing an important role in numerous cellular processes, including cell differentiation and apoptosis. Recently, a number of studies have revealed that miRNAs participate in bone homeostasis and their role in the pathogenesis of osteoporosis is practically evident. In this review, we highlight the miRNAs involved in bone remodelling and their roles in osteoporosis. miRNAs are stable molecules which make them promising potential markers for bone remodeling and osteoporosis.


2018 ◽  
Vol 200 (16) ◽  
Author(s):  
Kayley H. Janssen ◽  
Manisha R. Diaz ◽  
Cindy J. Gode ◽  
Matthew C. Wolfgang ◽  
Timothy L. Yahr

ABSTRACT The Gram-negative opportunistic pathogen Pseudomonas aeruginosa has distinct genetic programs that favor either acute or chronic virulence gene expression. Acute virulence is associated with twitching and swimming motility, expression of a type III secretion system (T3SS), and the absence of alginate, Psl, or Pel polysaccharide production. Traits associated with chronic infection include growth as a biofilm, reduced motility, and expression of a type VI secretion system (T6SS). The Rsm posttranscriptional regulatory system plays important roles in the inverse control of phenotypes associated with acute and chronic virulence. RsmA and RsmF are RNA-binding proteins that interact with target mRNAs to control gene expression at the posttranscriptional level. Previous work found that RsmA activity is controlled by at least three small, noncoding regulatory RNAs (RsmW, RsmY, and RsmZ). In this study, we took an in silico approach to identify additional small RNAs (sRNAs) that might function in the sequestration of RsmA and/or RsmF (RsmA/RsmF) and identified RsmV, a 192-nucleotide (nt) transcript with four predicted RsmA/RsmF consensus binding sites. RsmV is capable of sequestering RsmA and RsmF in vivo to activate translation of tssA1, a component of the T6SS, and to inhibit T3SS gene expression. Each of the predicted RsmA/RsmF consensus binding sites contributes to RsmV activity. Electrophoretic mobility shifts assays show that RsmF binds RsmV with >10-fold higher affinity than RsmY and RsmZ. Gene expression studies revealed that the temporal expression pattern of RsmV differs from those of RsmW, RsmY, and RsmZ. These findings suggest that each sRNA may play a distinct role in controlling RsmA and RsmF activity. IMPORTANCE The members of the CsrA/RsmA family of RNA-binding proteins play important roles in posttranscriptional control of gene expression. The activity of CsrA/RsmA proteins is controlled by small noncoding RNAs that function as decoys to sequester CsrA/RsmA from target mRNAs. Pseudomonas aeruginosa has two CsrA family proteins (RsmA and RsmF) and at least four sequestering sRNAs (RsmV [identified in this study], RsmW, RsmY, and RsmZ) that control RsmA/RsmF activity. RsmY and RsmZ are the primary sRNAs that sequester RsmA/RsmF, and RsmV and RsmW appear to play smaller roles. Differences in the temporal and absolute expression levels of the sRNAs and in their binding affinities for RsmA/RsmF may provide a mechanism of fine-tuning the output of the Rsm system in response to environmental cues.


2019 ◽  
Vol 20 (10) ◽  
pp. 2535 ◽  
Author(s):  
Hara Kang

Phytochemicals are known to benefit human health by modulating various cellular processes, including cell proliferation, apoptosis, and inflammation. Due to the potential use of phytochemicals as therapeutic agents against human diseases such as cancer, studies are ongoing to elucidate the molecular mechanisms by which phytochemicals affect cellular functions. It has recently been shown that phytochemicals may regulate the expression of microRNAs (miRNAs). MiRNAs are responsible for the fine-tuning of gene expression by controlling the expression of their target mRNAs in both normal and pathological cells. This review summarizes the recent findings regarding phytochemicals that modulate miRNA expression and promote human health by exerting anticancer, photoprotective, and anti-hepatosteatosis effects. Identifying miRNAs modulated by phytochemicals and understanding the regulatory mechanisms mediated by their target mRNAs will facilitate the efforts to maximize the therapeutic benefits of phytochemicals.


2019 ◽  
Vol 47 (7) ◽  
pp. e40-e40 ◽  
Author(s):  
Zhenghui Lu ◽  
Shihui Yang ◽  
Xin Yuan ◽  
Yunyun Shi ◽  
Li Ouyang ◽  
...  

2021 ◽  
Author(s):  
Eun Seon Kim ◽  
Chang Geon Chung ◽  
Jeong Hyang Park ◽  
Byung Su Ko ◽  
Sung Soon Park ◽  
...  

Abstract RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP, Staufen, may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. Stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


2021 ◽  
Vol 22 (11) ◽  
pp. 6054
Author(s):  
Ioanna Kokkinopoulou ◽  
Paraskevi Moutsatsou

Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document