scholarly journals Trained Immunity at a Glance; A Review on the Innate Immune Memory and its Potential Role in Infections, Diseases and New Therapeutic Strategies

2020 ◽  
Vol 8 (1) ◽  
pp. 68-81
Author(s):  
Silvia Incalcaterra ◽  
Jorge Andres Dominguez

Despite the existence of two different branches of immunity, innate and adaptive, it has been described that both systems are characterized by the establishment of memory responses. Indeed, it has been shown that cells belonging to the innate immune system can express a so-called “trained” memory, although it has different features from the adaptive immune memory. Adaptive memory is a long-lasting specific memory whereas innate memory involves non-specific responses which enhance the immune response during a second reinfection. However, many aspects of the trained immunity are still unclear. Metabolic and epigenetic reprogramming have been pointed as the two processes responsible for the establishment of the innate memory. Trained immunity seems to be responsible for the heterologous effect of many vaccines such as BCG, thus giving insights for the development of new therapies. Although its potential beneficial role, trained immunity could also have detrimental effects that might worsen the progress of certain diseases. The purpose of this literature review is to provide an in-depth review on the major characteristics of trained immunity, describing the main pathways at the basis of the evolution and establishment of memory in innate cells. In addition, the present review assesses the modern evidence of the impact of trained immunity in health and disease, strengthening the hypotheses that this innate memory may be considered both in the formulation of new therapeutic strategies and in the current therapeutic approaches.

2020 ◽  
pp. 1-9
Author(s):  
Anaisa Valido Ferreira ◽  
Jorge Domiguéz-Andrés ◽  
Mihai Gheorghe Netea

Immunological memory is classically attributed to adaptive immune responses, but recent studies have shown that challenged innate immune cells can display long-term functional changes that increase nonspecific responsiveness to subsequent infections. This phenomenon, coined <i>trained immunity</i> or <i>innate immune memory</i>, is based on the epigenetic reprogramming and the rewiring of intracellular metabolic pathways. Here, we review the different metabolic pathways that are modulated in trained immunity. Glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, amino acid, and lipid metabolism are interplaying pathways that are crucial for the establishment of innate immune memory. Unraveling this metabolic wiring allows for a better understanding of innate immune contribution to health and disease. These insights may open avenues for the development of future therapies that aim to harness or dampen the power of the innate immune response.


Science ◽  
2016 ◽  
Vol 352 (6284) ◽  
pp. aaf1098-aaf1098 ◽  
Author(s):  
M. G. Netea ◽  
L. A. B. Joosten ◽  
E. Latz ◽  
K. H. G. Mills ◽  
G. Natoli ◽  
...  

Author(s):  
György Csaba

AbstractThe faulty hormonal imprinting theory (published in 1980) and the DOHaD (Developmental Origin of Health and Disease theory (published in 1986) are twin-concepts: both justify the manifestation after long time (in adults) diseases which had been provoked in differentiating cells (e.g. during gestation). This was demonstrated using animal experiments as well, as comparative statistical methods (in human cases). However, there is no explanation for the tools of memorization (even after decades) of the early adversity and the tools of execution (manifestation) in adult age. It seems likely that immune memory is involved to the memorization of early adversity, up to the manifestation of the result (non-communicable diseases). Nevertheless, the relatively short timespan of adaptive immune memory makes this system insuitable for this function, however the newly recognized trained memory of the innate immune system seems to be theoretically suitable for the storage of the records and handling the sequalae, which is the epigenetic reprogramming in the time of provocation, without changes in base sequences (mutation). The flawed (damaged) program is manifested later, in adult age. Evidences are incomplete, so further animal experiments and human observations are needed for justifying the theory.


2021 ◽  
Vol 39 (1) ◽  
pp. 667-693 ◽  
Author(s):  
Siroon Bekkering ◽  
Jorge Domínguez-Andrés ◽  
Leo A.B. Joosten ◽  
Niels P. Riksen ◽  
Mihai G. Netea

Traditionally, the innate and adaptive immune systems are differentiated by their specificity and memory capacity. In recent years, however, this paradigm has shifted: Cells of the innate immune system appear to be able to gain memory characteristics after transient stimulation, resulting in an enhanced response upon secondary challenge. This phenomenon has been called trained immunity. Trained immunity is characterized by nonspecific increased responsiveness, mediated via extensive metabolic and epigenetic reprogramming. Trained immunity explains the heterologous effects of vaccines, which result in increased protection against secondary infections. However, in chronic inflammatory conditions, trained immunity can induce maladaptive effects and contribute to hyperinflammation and progression of cardiovascular disease, autoinflammatory syndromes, and neuroinflammation. In this review we summarize the current state of the field of trained immunity, its mechanisms, and its roles in both health and disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elisa Jentho ◽  
Sebastian Weis

The ability to remember a previous encounter with pathogens was long thought to be a key feature of the adaptive immune system enabling the host to mount a faster, more specific and more effective immune response upon the reencounter, reducing the severity of infectious diseases. Over the last 15 years, an increasing amount of evidence has accumulated showing that the innate immune system also has features of a memory. In contrast to the memory of adaptive immunity, innate immune memory is mediated by restructuration of the active chromatin landscape and imprinted by persisting adaptations of myelopoiesis. While originally described to occur in response to pathogen-associated molecular patterns, recent data indicate that host-derived damage-associated molecular patterns, i.e. alarmins, can also induce an innate immune memory. Potentially this is mediated by the same pattern recognition receptors and downstream signaling transduction pathways responsible for pathogen-associated innate immune training. Here, we summarize the available experimental data underlying innate immune memory in response to damage-associated molecular patterns. Further, we expound that trained immunity is a general component of innate immunity and outline several open questions for the rising field of pathogen-independent trained immunity.


Cell ◽  
2018 ◽  
Vol 175 (6) ◽  
pp. 1463-1465 ◽  
Author(s):  
Mihai G. Netea ◽  
Leo A.B. Joosten

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2109
Author(s):  
Samuel T. Pasco ◽  
Juan Anguita

Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and “innate memory-based vaccines” will be examined.


Challenges ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 25
Author(s):  
Raphael Watt ◽  
Kimberley Parkin ◽  
David Martino

The regulation of innate immunity is substantially more ‘plastic’ than previously appreciated. Innate immune memory (manifested through trained immunity and tolerance) is a recently described epigenetic phenomenon that is a model example, with broad implications for infectious disease, allergy and autoimmunity. Training the innate immune system to combat infections and temper inappropriate responses in non-communicable diseases will likely be an area of intense research. Innate immunity is influenced by short chain fatty acids, which are the natural products of digestion by the intestinal microbiota that possess inherent histone deacetylase inhibitory properties. It therefore stands to reason that a healthy gut microbiome may well influence mucosal and systemic trained immunity via short chain fatty acids. There is a lack of data on this specific topic, and we discuss potential relationships based on available and preliminary evidence. Understanding the link between intestinal microbiome composition, capacity for short chain fatty acid production and downstream effects on innate immune memory in early life will have important implications for host immunobiology. In this review we explore the intersection between the gut microbiota, short chain fatty acids and epigenetic regulation of innate immunity with a focus on early life.


Neonatology ◽  
2013 ◽  
Vol 105 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Ofer Levy ◽  
James L. Wynn

Sign in / Sign up

Export Citation Format

Share Document