scholarly journals Study on Properties of Concrete with Iron Ore Tailing and Glass Waste

2021 ◽  
Vol 8 (1) ◽  
pp. 30-39
Author(s):  
KS Sushmitha ◽  
P Dhanabal

The aim of this research is to test the characteristics of concrete by substitute fine aggregate with iron ore tailings and partial glass powder as in the place of cement. Concrete with waste products such as glass powder and iron ore tailings offer technical, economic and environmental advantages. In this experimental investigation, glass powder is replaced with cement by 10%, 20% and 30% and iron ore tailings with fine aggregates by 30% which is the optimum percentage. To study the role of glass powder and iron ore tailings combination in concrete. The properties such compressive strength, flexural strength, tensile strength and also durability parameters likely water absorption investigation for M40 concrete is carried out with different percentages of glass powder by keeping the iron ore tailings percentage constant. At 30% glass powder substitution as cement and sand with IOT increases concrete effectiveness. The concrete with 10% glass powder & 30% iron ore tailings showed a higher strength compared to the conventional mix for 28 days. Concrete mix containing 10% GP and 30% IOT showed higher flexural strength of 5.05 MPa for 28 days. Splitting tensile strength value is also increasing i. e for 10% glass powder and 30% IOT, obtained splitting tensile strength was 4.48 MPa and modulus of elasticity value was has also increased. Water absorption experiment consequences results that water absorption decreases with an increase in GP percentage.  The concrete workability tends to decrease when with glass powder content increase. Concrete containing 10% glass powder and 30% IOT showed maximum strength and it is considered as the optimum dosage.

2015 ◽  
Vol 735 ◽  
pp. 122-127 ◽  
Author(s):  
Sikiru Oritola ◽  
Abd Latif Saleh ◽  
Abdul Rahman Mohd Sam

This paper reports preliminary findings on the properties of concrete produced using iron ore tailings obtained from ZCM Minerals SDN BHD located in Kotta Tingi, Johor, Malaysia. The Iron Ore Tailings (IOT’s) a waste product, with particle size range from (850μm - 75μm) obtained from Iron Ore Processing was utilized as fine aggregate to produce concrete. Based on British Standard (BS) guidelines, normal concrete mix was designed. Five types of concrete samples (C0, C1, C2, C3, and C4) were produced, with the percentage of tailings used to replace sand as fine aggregate ranging from 0 to 40[%]. The reference sample is C0 with no tailings and the four others, containing tailings at 10[%] intervals. The effect of iron ore tailings on the consistency of the fresh concrete were studied, as well as the density, compressive strength, flexural strength and splitting tensile strength, of the hardened concrete. The results of the consistency tests on concrete shows that the slump values ranges from 81 to 53[mm] from concrete sample C0 to C4 respectively, while the compacting factor values ranges from 0.92 to 0.89 respectively. The density of the produced concrete cube samples falls within the range 2350 to 2430[kg/m3]. The concrete sample C3 gave the highest compressive strength value of 43.70[N/mm2]. The concrete sample C3 also gave the highest flexural strength value of 4.79[N/mm2], while the The concrete sample C4 gave the highest splitting tensile strength value of 4.0[N/mm2] after curing period of 28[days].


Copper slag is a rough blasting grit or a by-product acquired by the process of copper smelting and refining. These copper slags are recycled for copper recovery. In this paper, we analysed copper slag’s feasibility and evaluate its total competence in M25 grade concrete. In this observation, a concrete mixture is applied with copper slag as a fine aggregate ranging from 0%, 20%, 40%, 60%, 80%, and 100% respectively. The strength of copper slag’s implementation is accomplished on the basis of concrete’s flexural strength, compressive strength and splitting tensile strength. From the obtained results, in concrete 40% percentage of copper slag is used as sand replacement. On 28 days, the modulus of elasticity increased up to 32%, the compressive strength increased up to 34% and flexural strength is increased to 6.2%. From this experiment, it is proved technically that replacing sand using copper slag as a fine mixture in M25 grade concrete.


2018 ◽  
Vol 162 ◽  
pp. 02029
Author(s):  
Wasan Khalil ◽  
Nazar Al Obeidy

This investigation includes the use of 15% of glass wastes as a partial substitution to cement in combination with plastic wastes as volumetric replacement to natural coarse aggregate to produce sustainable concrete. Different volumetric replacements of plastic waste to natural coarse aggregate (25%, 50%, 75%, and 100%) were used in concrete containing 15% glass powder as a replacement by weight of cement. Generally, the results show that the inclusion of 15% glass powder improves the compressive strength, splitting tensile strength and flexural strength by about 13.3%, 36.3%, and 34.7%respectively at 60 day age in comparison with reference concrete without wastes, also the results show a decrease in water absorption and an increase in dry density. The inclusion of plastic waste aggregate in the presence of 15% glass powder leads to a decrease in the compressive strength, flexural strength, splitting tensile strength, dry density, ultrasonic pulse velocity, and thermal conductivity. The percentage reductions are 59.8%, 46.3%, 43.6%, 20.5%, 28.6%, and 54.4% respectively for concrete specimens that including 100% plastic waste coarse aggregate in comparison with concrete specimens without plastic waste aggregate.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 514
Author(s):  
Hadeel K. Awad ◽  
Rawaa K. Aboud ◽  
Shatha D. Mohammed

This research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of       different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%.Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength for both including and excluding of internal sulphate attack. This effect reached at 28 days of curing to (11.86, 10.22 and 4.75) % in case of excluding sulphate attack and to (13.82, 11.47and 6.53) % in the other case for SCC, HPC and RPC respectively. It can be concluded that the effect of metakaolin in both SCC and HPC are more influence than in RPC. Splitting and flexural strength have showed a similar behavior, flexural strength increased by (15.38, 9.42 and 5,84) % at age of 28 days when the sulphate attack is excluded, while it was (14.02, 10.66 and 4.28)% in case of sulphate attack included for SCC,HPC and RPC respectively. The response of splitting tensile strength for both including and excluding of sulphate attack reached to (13.03, 12.95 and 9.17) % and (16.88, 10.33 and 6.74) % respectively for SCC, HPC and RPC.   


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Fan Wu ◽  
Changwu Liu ◽  
Zhaofeng Diao ◽  
Bo Feng ◽  
Wei Sun ◽  
...  

The use of the polypropylene fibre and glass fibre with different volume fractions to improve the mechanical properties of peach shell lightweight concrete was investigated in this study. The volume fractions of 0.25%, 0.50%, and 0.75% were used for each fibre. The results showed that, as the polypropylene fibre and glass fibre were added into peach shell concrete, the density was reduced by up to 6.1% and the compressive strength, splitting tensile strength, and flexural strength were increased by 19.1%, 54.3%, and 38.6%, respectively. The highest compressive strength, splitting tensile strength, and flexural strength of 29.3 MPa, 2.87 MPa, and 3.09 MPa, respectively, were produced by peach shell concrete with 0.75% glass fibre. The results indicated that the incorporation of fibres significantly enhanced the postfailure toughness of peach shell concrete. It was found that the glass fibre was more effective than the polypropylene fibre in improving the mechanical properties of peach shell concrete. Although the incorporation of fibres slightly increased the water absorption and porosity, the type and content of fibres had no significant effect on water absorption and porosity. Therefore, the mechanical properties of peach shell lightweight concrete can be improved by adding polypropylene fibres and glass fibres.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1647 ◽  
Author(s):  
Saeid Ghorbani ◽  
Mostafa Gholizadeh ◽  
Jorge de Brito

In this research, the effect of magnetized water on the mechanical and durability behavior of concrete block pavers was investigated. For this purpose, a total of five mixes were prepared with water that passed through a permanent magnetic field 10, 20, 40, and 80 times at a constant speed of 2.25 m/s. Compressive strength, splitting tensile strength, flexural strength, resistance to sulfuric acid attack, water absorption tests, and Scanning Electron Microscopy (SEM) analyses were conducted. The compressive strength, splitting tensile strength, and flexural strength test results showed a significant positive effect of using magnetized water. The remaining tests also revealed that using magnetized water increases the resistance of concrete block pavers to sulfuric acid attack and decreases their water absorption.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Alireza Khaloo ◽  
Yaser Parvin Darabad

Despite the great use of concrete, tensile strength and low flexibility and brittleness are its weaknesses. Many solutions have been provided to eliminate the mentioned defects. In order to increase the flexibility of concrete in previous studies, crushed rubber tire particles have been added to concrete. Recycling car tires helps the environment and makes concrete much more flexible than regular concrete. In this research, silicone rubber has been replaced by 0%, 2%, 4%, 8%, 12.5%, 25%, and 50% of mineral aggregates. This rubber was initially in liquid form, which, after mixing with ordinary concrete, dispersed into the concrete texture and formed a uniform mixture, and this liquid rubber became a flexible solid after 24 hours. Concrete containing silicone rubber is a new composite with new properties, and in this research, it is called Hybrid Silicone Rubber Concrete (HSRC). Also, to evaluate the effect of aggregate size in making experimental specimens, two coarse to fine aggregate ratios of G/S = 0.7, 1.1 were considered. Flexural strength tests were performed on hardened concrete beam specimens. The results showed that, with increasing the amount of silicone rubber in concrete, flexural strength decreased and this percentage of strength reduction was compared with the percentage of reduction in compression and splitting tensile strength. It was found that the reduction of flexural strength was less than compression and splitting tensile strength. Larger deformation was observed during all tests when the concentration of silicone rubber increased. It was observed that the higher the amount of silicone rubber in the specimens, the less noise and the less separation of aggregates with which the failure of the specimens was associated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wasim Barham ◽  
Ammar AL-Maabreh ◽  
Omar Latayfeh

PurposeThe influence of using magnetic water instead of tap water in the mechanical properties of the concrete exposed to elevated temperatures was investigated. Two concrete mixes were used and cast with the same ingredients. Tap water was used in the first mix and magnetic water was used in the second mix. A total of 48 specimens were cast and divided as follows: 16 cylinders for the concrete compressive strength test (8 samples for each mix), 16 cylinders for the splitting tensile strength (8 specimens for each mix) and 16 beams to test the influences of magnetized water on the flexural strength of concrete (8 specimens for each mixture). Specimens were exposed to temperatures of (25 °C, 200 °C, 400 °C and 600 °C). The experimental results showed that magnetic water highly affected the mechanical properties of concrete. Specimens cast and curried out with magnetic water show higher compressive strength, splitting tensile strength and flexural strength compared to normal water specimens at all temperatures. The relative strength range between the two types of water used was 110–123% for compressive strength and 110–133% for splitting strength. For the center point loading test, the relative flexural strength range was 118–140%. The use of magnetic water in mixing concrete contribute to a more complete hydration process.Design/methodology/approachExperimental study was carried out on two concrete mixes to investigate the effect of magnetic water. Mix#1 used normal water as the mixing water, and Mix#2 used magnetic water instead of normal water. After 28 days, all the samples were taken out of the tank and left to dry for seven days, then they were divided into different groups. Each group was exposed to a different temperature where it was placed in a large oven for two hours. Three different tests were carried out on the samples, these tests were concrete compressive strength, flexural strength and splitting tensile strength.FindingsExposure of concrete to high temperatures had a significant influence on concrete mechanical properties. Specimens prepared using magnetic water showed higher compressive strength at all temperature levels. The use of magnetic water in casting and curing concrete can increase the compressive strength by 23%. Specimens prepared using magnetic water show higher splitting tensile strength at all temperatures up to 33%. The use of magnetic water in casting and curing can strengthen and increase concrete resistance to high temperatures, a significant enhancement in flexural strength at all temperatures was found with a value up to 40%.Originality/valuePrevious research proved the advantages of using magnetic water for improving the mechanical properties of concrete under normal conditions. The potential of using magnetic water in the concrete industry in the future requires conducting extensive research to study the behavior of magnetized concrete under severe conditions to which concrete structures may be subjected to. These days, there are attempts to obtain stronger concrete with high resistance to harsh environmental conditions without adding new costly ingredients to its main mixture. No research has been carried out to investigate the effect of magnetic water on the mechanical properties of concrete exposed to elevated temperature. The main objective of this study is to evaluate the effect of using magnetic water on the mechanical properties of hardened concrete subjected to elevated temperature.


2018 ◽  
Vol 7 (2.29) ◽  
pp. 927 ◽  
Author(s):  
Bishir Kado ◽  
Shahrin Mohammad ◽  
Yeong Huei Lee ◽  
Poi Ngian Shek ◽  
Mariyana Aida Ab Kadir

Lightweight construction is aimed to achieve a sustainable feature by reducing transportation frequency and construction materials usage during construction phase. Lightweight precast concrete may serve an alternative for the lightweight construction. There are rarely application can be found for structural members as lightweight panels always to be used for secondary or non-load bearing members. This paper presents an experimental study on properties (compressive strength, splitting tensile strength, water absorption) of lightweight foamed concrete (LFC) at two different curing methods. LFC with densities of 1500, 1700, and 1800 kg/m3, cement-sand ratio of 2:1 and water-cement ratio of 0.5 were investigated. The results showed LFC can be produced with the properties ofdensity range of 1500 to 1800 kg/m3 and corresponding compressive strength of 10 to 39 MPa. The higher the density of LFC, the less the water absorption for all the curing method considered, the highest and the lowest water absorption was 11.3% and 2.0% for 1500 kg/m3 cured in water and 1800 kg/m3 cured in air respectively. Compressive strength of LFC increases with age and density while water cured LFC has high compressive strength. Splitting tensile strength increases with density of LFC, but air cured LFC has more splitting tensile strength than water cured of the same density. The highest splitting tensile strength recorded was 3.92 MPa for 1800 kg/m3 cured in air, which was about 16% of its compressive strength at 28 days of curing age. These properties are important and can be applied to LFC precast structural members with air or water curing method which have less references for LFC in structural usage.  


2013 ◽  
Vol 6 (1) ◽  
pp. 50-61
Author(s):  
Amer M. Ibrahem ◽  
Shakir A. Al-Mishhadani ◽  
Zeinab H.Naji

This investigation aimed to study the effect of nano metakaolin ( NMK ) on some properties (compressive strength ,splitting tensile strength & water absorption ) of concrete. The nano metakaolin (NMK) was prepared by thermal activation of kaolin clay for 2 hours at 750 Ċ. The cement used in this investigation consists of ordinary Portland cement (OPC). The OPC was partially substituted by NMK of ( 3, 5 & 10%) by weight of cement. The C45 concrete was prepared , using water/cement ratio ( W/c) of (0.53) .The Water absorption was tested at 28 days while the tests (compressive strength ,splitting tensile strength) were tested at ages of (7, 28, 60,& 90) days . The compressive strength and splitting tensile strength of concrete with NMK were higher than that of reference concrete with the same W/c ratio.The improvement in the compressive strength when using NMK was (42.2, 55.8 , 63.1% ) at age 28 days for ( 3%, 5%, &10% ) replacement of NMK respectively whereas the improvement in the splitting tensile strength was (0% , 36% & 46.8 %) at age of 28 days when using (3%, 5%, &10% ) NMK respectively. The improvement in the water absorption was (16.6%, 21.79%, &25.6 ) when using (3, 5, &10% )NMK.


Sign in / Sign up

Export Citation Format

Share Document