scholarly journals Classification of Disaster Risks in the Philippines using Adaptive Boosting Algorithm with Decision Trees and Support Vector Machine as Based Estimators

2021 ◽  
Vol 4 (1) ◽  
pp. 7-18
Author(s):  
Donata D Acula

This paper employed the intelligent approach based on machine learning categorized as base and ensemble methods in classifying the disaster risk in the Philippines. It focused on the Decision Trees, Support Vector Machine, Adaptive Boosting Algorithm with Decision Trees, and Support Vector Machine as base estimators. The research used the Exponential Regression for missing value imputation and converted the number of casualties, damaged houses, and properties into five (5) risk levels using Quantile Method. The 10-fold cross-validation was used to validate the proposed algorithms. The experiment shows that Decision Trees and Adaptive Decision Trees are the most suitable models for the disaster data with the score of more than 90%, more than 75%, more than  75%  in all the classification metrics (accuracy, precision, recall f1-score) when applied to classification risk levels of casualties, damaged houses and damaged properties respectively.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Binjie Chen ◽  
Fushan Wei ◽  
Chunxiang Gu

Since its inception, Bitcoin has been subject to numerous thefts due to its enormous economic value. Hackers steal Bitcoin wallet keys to transfer Bitcoin from compromised users, causing huge economic losses to victims. To address the security threat of Bitcoin theft, supervised learning methods were used in this study to detect and provide warnings about Bitcoin theft events. To overcome the shortcomings of the existing work, more comprehensive features of Bitcoin transaction data were extracted, the unbalanced dataset was equalized, and five supervised methods—the k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), adaptive boosting (AdaBoost), and multi-layer perceptron (MLP) techniques—as well as three unsupervised methods—the local outlier factor (LOF), one-class support vector machine (OCSVM), and Mahalanobis distance-based approach (MDB)—were used for detection. The best performer among these algorithms was the RF algorithm, which achieved recall, precision, and F1 values of 95.9%. The experimental results showed that the designed features are more effective than the currently used ones. The results of the supervised methods were significantly better than those of the unsupervised methods, and the results of the supervised methods could be further improved after equalizing the training set.


2021 ◽  
Vol 15 (58) ◽  
pp. 308-318
Author(s):  
Tran-Hieu Nguyen ◽  
Anh-Tuan Vu

In this paper, a machine learning-based framework is developed to quickly evaluate the structural safety of trusses. Three numerical examples of a 10-bar truss, a 25-bar truss, and a 47-bar truss are used to illustrate the proposed framework. Firstly, several truss cases with different cross-sectional areas are generated by employing the Latin Hypercube Sampling method. Stresses inside truss members as well as displacements of nodes are determined through finite element analyses and obtained values are compared with design constraints. According to the constraint verification, the safety state is assigned as safe or unsafe. Members’ sectional areas and the safety state are stored as the inputs and outputs of the training dataset, respectively. Three popular machine learning classifiers including Support Vector Machine, Deep Neural Network, and Adaptive Boosting are used for evaluating the safety of structures. The comparison is conducted based on two metrics: the accuracy and the area under the ROC curve. For the two first examples, three classifiers get more than 90% of accuracy. For the 47-bar truss, the accuracies of the Support Vector Machine model and the Deep Neural Network model are lower than 70% but the Adaptive Boosting model still retains the high accuracy of approximately 98%. In terms of the area under the ROC curve, the comparative results are similar. Overall, the Adaptive Boosting model outperforms the remaining models. In addition, an investigation is carried out to show the influence of the parameters on the performance of the Adaptive Boosting model.


2021 ◽  
Vol 325 ◽  
pp. 04007
Author(s):  
Lawrence D. Alejandrino ◽  
Jessica Joy D. Jocson ◽  
Micah Romina R. Mirarza ◽  
Ericson D. Dimaunahan ◽  
Ramon G Garcia ◽  
...  

Laguna de Bay, the largest freshwater lake in the Philippines, provides livelihood to the fishermen and serves as a source of potable water to the locals. However, freshwater quality has degraded, whereas one of the main contributors are Cyanobacteria that produce cyanotoxins. Existing studies that uses a similar device are either too expensive or too bulky. The purpose of this study is to estimate the cyanobacteria concentration by using a low-cost 16-channel spectrophotometric device to determine the level of severity efficiently. Using Linear Regression, the dataset is modelled by the algorithm to estimate the number of cyanobacteria present on the water sample, while Support Vector Machine (SVM) algorithm for severity level classifier. This study achieved high accuracy in estimating the cyanobacteria using linear regression and classifying the level of severity by support vector machine.


2017 ◽  
Vol 10 (2) ◽  
pp. 695-708 ◽  
Author(s):  
Simon Ruske ◽  
David O. Topping ◽  
Virginia E. Foot ◽  
Paul H. Kaye ◽  
Warren R. Stanley ◽  
...  

Abstract. Characterisation of bioaerosols has important implications within environment and public health sectors. Recent developments in ultraviolet light-induced fluorescence (UV-LIF) detectors such as the Wideband Integrated Bioaerosol Spectrometer (WIBS) and the newly introduced Multiparameter Bioaerosol Spectrometer (MBS) have allowed for the real-time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal spores and pollen.This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents, bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification.For unsupervised learning we tested hierarchical agglomerative clustering with various different linkages. For supervised learning, 11 methods were tested, including decision trees, ensemble methods (random forests, gradient boosting and AdaBoost), two implementations for support vector machines (libsvm and liblinear) and Gaussian methods (Gaussian naïve Bayesian, quadratic and linear discriminant analysis, the k-nearest neighbours algorithm and artificial neural networks).The methods were applied to two different data sets produced using the new MBS, which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. The first data set contained mixed PSLs and the second contained a variety of laboratory-generated aerosol.Clustering in general performs slightly worse than the supervised learning methods, correctly classifying, at best, only 67. 6 and 91. 1 % for the two data sets respectively. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 82. 8 and 98. 27 % of the testing data, respectively, across the two data sets.A possible alternative to gradient boosting is neural networks. We do however note that this method requires much more user input than the other methods, and we suggest that further research should be conducted using this method, especially using parallelised hardware such as the GPU, which would allow for larger networks to be trained, which could possibly yield better results.We also saw that some methods, such as clustering, failed to utilise the additional shape information provided by the instrument, whilst for others, such as the decision trees, ensemble methods and neural networks, improved performance could be attained with the inclusion of such information.


Robotica ◽  
2002 ◽  
Vol 20 (5) ◽  
pp. 499-508
Author(s):  
Jie Yang ◽  
Chenzhou Ye ◽  
Nianyi Chen

SummaryA software tool for data mining (DMiner-I) is introduced, which integrates pattern recognition (PCA, Fisher, clustering, HyperEnvelop, regression), artificial intelligence (knowledge representation, decision trees), statistical learning (rough set, support vector machine), and computational intelligence (neural network, genetic algorithm, fuzzy systems). It consists of nine function models: pattern recognition, decision trees, association rule, fuzzy rule, neural network, genetic algorithm, HyperEnvelop, support vector machine and visualization. The principle, algorithms and knowledge representation of some function models of data mining are described. Nonmonotony in data mining is dealt with by concept hierarchy and layered mining. The software tool of data mining is realized byVisual C++under Windows 2000. The software tool of data mining has been satisfactorily applied in the prediction of regularities of the formation of ternary intermetallic compounds in alloy systems, and diagnosis of brain glioma.


Sign in / Sign up

Export Citation Format

Share Document