scholarly journals Bitcoin Theft Detection Based on Supervised Machine Learning Algorithms

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Binjie Chen ◽  
Fushan Wei ◽  
Chunxiang Gu

Since its inception, Bitcoin has been subject to numerous thefts due to its enormous economic value. Hackers steal Bitcoin wallet keys to transfer Bitcoin from compromised users, causing huge economic losses to victims. To address the security threat of Bitcoin theft, supervised learning methods were used in this study to detect and provide warnings about Bitcoin theft events. To overcome the shortcomings of the existing work, more comprehensive features of Bitcoin transaction data were extracted, the unbalanced dataset was equalized, and five supervised methods—the k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), adaptive boosting (AdaBoost), and multi-layer perceptron (MLP) techniques—as well as three unsupervised methods—the local outlier factor (LOF), one-class support vector machine (OCSVM), and Mahalanobis distance-based approach (MDB)—were used for detection. The best performer among these algorithms was the RF algorithm, which achieved recall, precision, and F1 values of 95.9%. The experimental results showed that the designed features are more effective than the currently used ones. The results of the supervised methods were significantly better than those of the unsupervised methods, and the results of the supervised methods could be further improved after equalizing the training set.

2019 ◽  
Vol 6 ◽  
pp. 237428951987308 ◽  
Author(s):  
Hooman H. Rashidi ◽  
Nam K. Tran ◽  
Elham Vali Betts ◽  
Lydia P. Howell ◽  
Ralph Green

Increased interest in the opportunities provided by artificial intelligence and machine learning has spawned a new field of health-care research. The new tools under development are targeting many aspects of medical practice, including changes to the practice of pathology and laboratory medicine. Optimal design in these powerful tools requires cross-disciplinary literacy, including basic knowledge and understanding of critical concepts that have traditionally been unfamiliar to pathologists and laboratorians. This review provides definitions and basic knowledge of machine learning categories (supervised, unsupervised, and reinforcement learning), introduces the underlying concept of the bias-variance trade-off as an important foundation in supervised machine learning, and discusses approaches to the supervised machine learning study design along with an overview and description of common supervised machine learning algorithms (linear regression, logistic regression, Naive Bayes, k-nearest neighbor, support vector machine, random forest, convolutional neural networks).


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


2021 ◽  
Vol 9 (1) ◽  
pp. 215-223
Author(s):  
Prateek Mishra, Dr.Anurag Sharma, Dr. Abhishek Badholia

Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic.  supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.


Author(s):  
Dimple Chehal ◽  
Parul Gupta ◽  
Payal Gulati

Sentiment analysis of product reviews on e-commerce platforms aids in determining the preferences of customers. Aspect-based sentiment analysis (ABSA) assists in identifying the contributing aspects and their corresponding polarity, thereby allowing for a more detailed analysis of the customer’s inclination toward product aspects. This analysis helps in the transition from the traditional rating-based recommendation process to an improved aspect-based process. To automate ABSA, a labelled dataset is required to train a supervised machine learning model. As the availability of such dataset is limited due to the involvement of human efforts, an annotated dataset has been provided here for performing ABSA on customer reviews of mobile phones. The dataset comprising of product reviews of Apple-iPhone11 has been manually annotated with predefined aspect categories and aspect sentiments. The dataset’s accuracy has been validated using state-of-the-art machine learning techniques such as Naïve Bayes, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor and Multi Layer Perceptron, a sequential model built with Keras API. The MLP model built through Keras Sequential API for classifying review text into aspect categories produced the most accurate result with 67.45 percent accuracy. K- nearest neighbor performed the worst with only 49.92 percent accuracy. The Support Vector Machine had the highest accuracy for classifying review text into aspect sentiments with an accuracy of 79.46 percent. The model built with Keras API had the lowest 76.30 percent accuracy. The contribution is beneficial as a benchmark dataset for ABSA of mobile phone reviews.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


Author(s):  
Prathima P

Abstract: Fall is a significant national health issue for the elderly people, generally resulting in severe injuries when the person lies down on the floor over an extended period without any aid after experiencing a great fall. Thus, elders need to be cared very attentively. A supervised-machine learning based fall detection approach with accelerometer, gyroscope is devised. The system can detect falls by grouping different actions as fall or non-fall events and the care taker is alerted immediately as soon as the person falls. The public dataset SisFall with efficient class of features is used to identify fall. The Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms are employed to detect falls with lesser false alarms. The SVM algorithm obtain a highest accuracy of 99.23% than RF algorithm. Keywords: Fall detection, Machine learning, Supervised classification, Sisfall, Activities of daily living, Wearable sensors, Random Forest, Support Vector Machine


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


Sign in / Sign up

Export Citation Format

Share Document