scholarly journals Out-of-equilibrium phase transitions induced by Floquet resonances in a periodically quench-driven XY spin chain

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sergio Enrique Tapias Arze ◽  
Pieter W. Claeys ◽  
Isaac Perez Castillo ◽  
Jean-Sébastien Caux

We consider the dynamics of an XY spin chain subjected to an external transverse field which is periodically quenched between two values. By deriving an exact expression of the Floquet Hamiltonian for this out-of-equilibrium protocol with arbitrary driving frequencies, we show how, after an unfolding of the Floquet spectrum, the parameter space of the system is characterized by alternations between local and non-local regions, corresponding respectively to the absence and presence of Floquet resonances. The boundary lines between regions are obtained analytically from avoided crossings in the Floquet quasi-energies and are observable as phase transitions in the synchronized state. The transient behaviour of dynamical averages of local observables similarly undergoes a transition, showing either a rapid convergence towards the synchronized state in the local regime, or a rather slow one exhibiting persistent oscillations in the non-local regime, where explicit decay coefficients are presented.

2009 ◽  
Vol 5 (10) ◽  
pp. 741-747 ◽  
Author(s):  
Jörn Dunkel ◽  
Peter Hänggi ◽  
Stefan Hilbert

2012 ◽  
Vol 26 (22) ◽  
pp. 1250141 ◽  
Author(s):  
HANLI LIAN

By calculating the Berry Phase (BP) of a central spin, the quantum criticality of the surrounding environment described by an XY spin chain with the three-site interaction in a transverse magnetic field is explored. The BP presents anomalous behavior along the critical region. The finite-size scaling behaviors suggest that the BP of the central spin can well capture the critical properties of the XY spin chain with the three-site interaction.


Author(s):  
Valerio Lucarini ◽  
Grigorios A. Pavliotis ◽  
Niccolò Zagli

We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers–Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker–Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai–Zwanzig model and of the Bonilla–Casado–Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.


2019 ◽  
Vol 489 (6) ◽  
pp. 545-551
Author(s):  
E. V. Radkevich ◽  
O. A. Vasil’eva ◽  
M. I. Sidorov

A model was constructed for the reconstruction of the initial stage of crystallization of binary alloys as a nonequilibrium phase transition, the mechanism of which is diffusion stratification. Numerical experiments were performed. Self-excitation of a homogeneous state by the edge control melt cooling condition.


Sign in / Sign up

Export Citation Format

Share Document