scholarly journals Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

2016 ◽  
Vol Volume 11 ◽  
pp. 4381-4395 ◽  
Author(s):  
Fuzhou Tian ◽  
Hongyu Sun ◽  
Yongchao Mou ◽  
Yi Li ◽  
Xia Li ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mingzhu Jin ◽  
Yujing Zhang ◽  
Yuanyuan Bian ◽  
Ruiqun Qi ◽  
Xinghua Gao

Adipose-derived stem cells (ADSCs) are an abundant cell source and provide an easy way to harvest mesenchymal stem cells, which are the focus of considerable attention in regenerative medicine. Electric fields (EF) play roles in many biological events and have been reported to promote cell proliferation, migration, and differentiation. In this study, ADSCs were treated with a direct current electric field (DCEF) of either 0 (control group) or 300 mV/mm (EF group) for six hours. RNA screening and analysis revealed that 66, 164, 26, and 1310 circRNAs, lncRNAs, miRNAs, and mRNAs, respectively, were differentially expressed in the DCEF-treated ADSCs compared with untreated ADSCs. Differentially expressed mRNAs were enriched in the MAPK signaling pathway, TNF signaling pathway, and some other pathways. ANXA1, ERRFI1, JAG1, EPHA2, PRR9, and H2AFY2 were related to the keratinocyte differentiation process. Competing endogenous RNA (ceRNA) networks were constructed on the basis of genes in the MAPK signaling pathway. Twenty-one RNAs in the above networks were randomly chosen, and their expression was validated using qRT-PCR, which showed the same expression trends as the RNA sequencing analysis. The MAPK signaling pathway is of great importance in the ADSC processes that occur in a DCEF, including keratinocyte differentiation. Several ceRNAs may participate in the regulation of MAPK signaling. This study may give new insight into the proliferation, migration, and differentiation of ADSCs, which will be valuable for tissue engineering and regenerative medicine.


Stem Cells ◽  
2014 ◽  
Vol 32 (12) ◽  
pp. 3137-3149 ◽  
Author(s):  
Lucy Leshansky ◽  
Daniel Aberdam ◽  
Joseph Itskovitz-Eldor ◽  
Sonia Berrih-Aknin

2021 ◽  
Author(s):  
Xuling Lv ◽  
Hao Chen ◽  
Zikai Zhang ◽  
Tian Li ◽  
Qing Wei ◽  
...  

Abstract Background: Pelvic floor dysfunction (PFD) is a spectrum of disorders including stress urinary incontinence and pelvic organ prolapse. Transforming growth factor-β1 (TGF-β1) can induce mesenchymal stem cells (MSCs) to differentiate into smooth muscle cells (SMCs). SMCs derived from adipose-derived stem cells (ADSCs) can be used to repair damaged pelvic floor smooth muscle tissues, which is of great interest for clinical applications using stem cell therapy for PFD. The Wnt/β-catenin pathway acts as a decisive factor in the fate of stem cells.Methods and Results: In this study, we used medium containing TGF-β1, TGF-β1 inhibitor LY2109761, or Wnt/β-catenin inhibitor KYA1797K, to induce ADCSs to differentiate into SMCs in vitro to explore the influence of TGF-β1 on the myogenic differentiation of ADCSs via the Wnt/β-catenin pathway. Results: 1) TGF-β1 induces ADSC-derived SMCs to hyper-express the SMC markers including SMA-α, Desmin, Calponin, and SMMHC ; 2) TGF-β1 activates the Wnt/β-catenin signaling pathway in ADSCs. After blocking TGF-β1, the Wnt/β-catenin pathway and myogenic differentiation in cells were inhibited; 3) the Wnt/β-catenin pathway is involved in the differentiation of ADSCs into SMCs. After differentiation induction, the synchronized changes in the activation of Wnt/β-catenin signaling and the expression of SMC-specific proteins showed a trend of simultaneous changes, and after the inhibition of the Wnt pathway, the adult muscle differentiation was significantly inhibited.Conclusions: We established a simpler and more efficient method for inducing ADSCs to differentiate into SMCs using TGF-β1 and demonstrated that the Wnt/β-catenin signaling pathway is activated during this process.


2020 ◽  
Author(s):  
Wang Zi Xian ◽  
Liu Qian ◽  
Liu Jian Min ◽  
Zheng Zi Qiong ◽  
Feng Jia ◽  
...  

Abstract BackgroundRegenerative medicine and tissue engineering have brought new therapeutic prospects to the treatment of soft tissue defects, but the selection of seed cells is the key to treatment. Adipose-derived stem cells (ASCs) have always been a popular candidate for seed cells because of their rich sources, easy access, high plasticity, and strong value-added capabilities. The purpose of the current study is to explore the role of PACAP -derived peptide MPAPO on the adipogenic differentiation of ASCs and its molecular mechanism.MethodsThe effect of MPAPO on the proliferation of adipose-derived stem cells were detected by CCK-8 assay and PI single-staining-flow. To reveal the direct effect of MPAPO on the adipogenic differentiation of ASCs, a model of adipogenic differentiation of adipose stem cells was established. In addition, adipogenic differentiation capacity was assessed using Oil-Red-O Staining, Triglyceride (TG) assay and quantification of gene expression. Finally, the relationship between ASCs adipogenic differentiation and the ERK signaling pathway was explored by Western blot.ResultsMPAPO treatment can significantly promote the proliferation of ASCs. In addition, PACAP treatment improves the adipogenic differentiation efficiency of ASCs, including promoting the accumulation of lipid droplets and triglycerides, and the expression of adipogenic-related transcription factors PPARγ and C/EBPα. The mechanism studies showed that MPAPO selectively binds to the PAC1 receptor to promote the adipogenic differentiation of ASCs via activating the ERK signaling pathway.ConclusionsThe present study shows that MPAPO could promote the adipogenic differentiation of ASCs by activating the ERK signaling pathway, and provide relevant experimental evidence for the filling of clinical tissue defects.


Sign in / Sign up

Export Citation Format

Share Document