scholarly journals Liver Targeting of Daclatasvir via Tailoring Sterically Stabilized Bilosomes: Fabrication, Comparative In Vitro/In Vivo Appraisal and Biodistribution Studies

2021 ◽  
Vol Volume 16 ◽  
pp. 6413-6426
Author(s):  
Mohamed El-Nabarawi ◽  
Mohamed Nafady ◽  
Shahira elmenshawe ◽  
Marwa Elkarmalawy ◽  
Mahmoud Teaima

2019 ◽  
Vol 18 (9) ◽  
pp. 1289-1294 ◽  
Author(s):  
Kusum Vats ◽  
Rohit Sharma ◽  
Haladhar D. Sarma ◽  
Drishty Satpati ◽  
Ashutosh Dash

Aims: The urokinase Plasminogen Activator Receptors (uPAR) over-expressed on tumor cells and their invasive microenvironment are clinically significant molecular targets for cancer research. uPARexpressing cancerous lesions can be suitably identified and their progression can be monitored with radiolabeled uPAR targeted imaging probes. Hence this study aimed at preparing and evaluating two 68Ga-labeled AE105 peptide conjugates, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 as uPAR PET-probes. Method: The peptide conjugates, HBED-CC-AE105-NH2 and NODAGA-AE105-NH2 were manually synthesized by standard Fmoc solid phase strategy and subsequently radiolabeled with 68Ga eluted from a commercial 68Ge/68Ga generator. In vitro cell studies for the two radiotracers were performed with uPAR positive U87MG cells. Biodistribution studies were carried out in mouse xenografts with the subcutaneously induced U87MG tumor. Results: The two radiotracers, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 that were prepared in >95% radiochemical yield and >96% radiochemical purity, exhibited excellent in vitro stability. In vivo evaluation studies revealed higher uptake of 68Ga-HBED-CC-AE105 in U87MG tumor as compared to 68Ga-NODAGAAE105; however, increased lipophilicity of 68Ga-HBED-CC-AE105 resulted in slower clearance from blood and other non-target organs. The uPAR specificity of the two radiotracers was ascertained by significant (p<0.05) reduction in the tumor uptake with a co-injected blocking dose of unlabeled AE-105 peptide. Conclusion: Amongst the two radiotracers studied, the neutral 68Ga-NODAGA-AE105 with more hydrophilic chelator exhibited faster clearance from non-target organs. The conjugation of HBED-CC chelator (less hydrophilic) resulted in negatively charged 68Ga-HBED-CC-AE105 which was observed to have high retention in blood that decreased target to non-target ratios.



Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.



Peptides ◽  
2009 ◽  
Vol 30 (12) ◽  
pp. 2409-2417 ◽  
Author(s):  
Alexandra Evangelou ◽  
Christos Zikos ◽  
Dimitra Benaki ◽  
Maria Pelecanou ◽  
Penelope Bouziotis ◽  
...  


2020 ◽  
Vol 21 (7) ◽  
pp. 2375 ◽  
Author(s):  
Zannatul Ferdous ◽  
Abderrahim Nemmar

Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread commercial and biomedical application of nanosilver include its use as a catalyst and an optical receptor in cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health. In the present review, after giving an overview of ENMs, we discuss the current advances on the physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs. Though there has been an increase in the number of studies in this area, more investigations are required to understand the mechanisms of toxicity following various modes of exposure to AgNPs.



2019 ◽  
Vol 20 (3) ◽  
pp. 471 ◽  
Author(s):  
Shriya S. Srinivasan ◽  
Rajesh Seenivasan ◽  
Allison Condie ◽  
Stanton L. Gerson ◽  
Yanming Wang ◽  
...  

Chemotherapeutic dosing, is largely based on the tolerance levels of toxicity today. Molecular imaging strategies can be leveraged to quantify DNA cytotoxicity and thereby serve as a theranostic tool to improve the efficacy of treatments. Methoxyamine-modified cyanine-7 (Cy7MX) is a molecular probe which binds to apurinic/apyrimidinic (AP)-sites, inhibiting DNA-repair mechanisms implicated by cytotoxic chemotherapies. Herein, we loaded (Cy7MX) onto polyethylene glycol-coated gold nanoparticles (AuNP) to selectively and stably deliver the molecular probe intravenously to tumors. We optimized the properties of Cy7MX-loaded AuNPs using optical spectroscopy and tested the delivery mechanism and binding affinity using the DLD1 colon cancer cell line in vitro. A 10:1 ratio of Cy7MX-AuNPs demonstrated a strong AP site-specific binding and the cumulative release profile demonstrated 97% release within 12 min from a polar to a nonpolar environment. We further demonstrated targeted delivery using imaging and biodistribution studies in vivo in an xenografted mouse model. This work lays a foundation for the development of real-time molecular imaging techniques that are poised to yield quantitative measures of the efficacy and temporal profile of cytotoxic chemotherapies.



2019 ◽  
Vol 12 (4) ◽  
pp. 166 ◽  
Author(s):  
Lauren L. Radford ◽  
Solana Fernandez ◽  
Rebecca Beacham ◽  
Retta El Sayed ◽  
Renata Farkas ◽  
...  

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.



Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1168
Author(s):  
Haozhong Ding ◽  
Mohamed Altai ◽  
Sara S. Rinne ◽  
Anzhelika Vorobyeva ◽  
Vladimir Tolmachev ◽  
...  

Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderate- to high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (ZHER2:2891)2–ABD–MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate–spacer–, (ZHER2:2891)2–ABD–E3–MC-DM1, or a hexaglutamate–spacer–, (ZHER2:2891)2–ABD–E6–MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (ZHER2:2891)2–ABD–MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability.



2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
I-Hong Shih ◽  
Fan-Lin Kong ◽  
Mohammad S. Ali ◽  
Yinhan Zhang ◽  
Dong-Fang Yu ◽  
...  

Radiolabeled tyrosine analogs enter cancer cells via upregulated amino acid transporter system and have been shown to be superior to18F-fluoro-2-deoxy-D-glucose (18F-FDG) in differential diagnosis in cancers. In this study, we synthesized O-[3-19F-fluoropropyl]-α-methyl tyrosine (19F-FPAMT) and used manual and automated methods to synthesize O-[3-18F-fluoropropyl]-α-methyl tyrosine (18F-FPAMT) in three steps: nucleophilic substitution, deprotection of butoxycarbonyl, and deesterification. Manual and automated synthesis methods produced18F-FPAMT with a radiochemical purity >96%. The decay-corrected yield of18F-FPAMT by manual synthesis was 34% at end-of-synthesis (88 min). The decay-corrected yield of18F-FPAMT by automated synthesis was 15% at end-of-synthesis (110 min).18F-FDG and18F-FPAMT were used forin vitroandin vivostudies to evaluate the feasibility of18F-FPAMT for imaging rat mesothelioma (IL-45).In vitrostudies comparing18F-FPAMT with18F-FDG revealed that18F-FDG had higher uptake than that of18F-FPAMT, and the uptake ratio of18F-FPAMT reached the plateau after being incubated for 60 min. Biodistribution studies revealed that the accumulation of18F-FPAMT in the heart, lungs, thyroid, spleen, and brain was significantly lower than that of18F-FDG. There was poor bone uptake in18F-FPAMT for up to 3 hrs suggesting itsin vivostability. The imaging studies showed good visualization of tumors with18F-FPAMT. Together, these results suggest that18F-FPAMT can be successfully synthesized and has great potential in mesothelioma imaging.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan Vigne ◽  
Sylvie Bay ◽  
Rachida Aid-Launais ◽  
Guillaume Pariscoat ◽  
Guillaume Rucher ◽  
...  

AbstractThere is a need for new targets to specifically localize inflammatory foci, usable in a wide range of organs. Here, we hypothesized that the cleaved molecular form of CD31 is a suitable target for molecular imaging of inflammation. We evaluated a bioconjugate of D-P8RI, a synthetic peptide that binds all cells with cleaved CD31, in an experimental rat model of sterile acute inflammation. Male Wistar rats were injected with turpentine oil into the gastrocnemius muscle two days before 99mTc-HYNIC-D-P8RI (or its analogue with L-Proline) SPECT/CT or [18F]FDG PET/MRI. Biodistribution, stability study, histology, imaging and autoradiography of 99mTc-HYNIC-D-P8RI were further performed. Biodistribution studies revealed rapid elimination of 99mTc-HYNIC-D-P8RI through renal excretion with almost no uptake from most organs and excellent in vitro and in vivo stability were observed. SPECT/CT imaging showed a significant higher 99mTc-HYNIC-D-P8RI uptake compared with its analogue with L-Proline (negative control) and no significant difference compared with [18F]FDG (positive control). Moreover, autoradiography and histology revealed a co-localization between 99mTc-HYNIC-D-P8RI uptake and inflammatory cell infiltration. 99mTc-HYNIC-D-P8RI constitutes a new tool for the detection and localization of inflammatory sites. Our work suggests that targeting cleaved CD31 is an attractive strategy for the specific in vivo imaging of inflammatory processes.



2021 ◽  
Vol 210 ◽  
pp. 113048
Author(s):  
Jéssica Tauany Andrade ◽  
William Gustavo Lima ◽  
Jaqueline França Sousa ◽  
Aline Aparecida Saldanha ◽  
Nívea Pereira De Sá ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document