scholarly journals Decrease of Rossby Wave Breaking Frequency over the Middle North Pacific in Boreal Summer under Global Warming in Large-Ensemble Climate Simulations

Author(s):  
Kazuto TAKEMURA ◽  
Hitoshi MUKOUGAWA ◽  
Shuhei MAEDA
2019 ◽  
Vol 147 (2) ◽  
pp. 433-455 ◽  
Author(s):  
Kevin A. Bowley ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Zonal available potential energy AZ measures the magnitude of meridional temperature gradients and static stability of a domain. Here, the role of Northern Hemisphere dynamic tropopause (2.0-PVU surface) Rossby wave breaking (RWB) in supporting an environment facilitating buildups of AZ on synoptic time scales (3–10 days) is examined. RWB occurs when the phase speed of a Rossby wave slows to the advective speed of the atmosphere, resulting in a cyclonic or anticyclonic RWB event (CWB and AWB, respectively). These events have robust dynamic and thermodynamic feedbacks through the depth of the troposphere that can modulate AZ. Significant synoptic-scale buildups in AZ and RWB events are identified from the National Centers for Environmental Prediction Reanalysis-2 dataset from 1979 to 2011 for 20°–85°N. Anomalies in AWB and CWB are assessed seasonally for buildup periods of AZ. Positive anomalies in AWB and negative anomalies in CWB are found for most AZ buildup periods in the North Pacific and North Atlantic basins and attributed to localized poleward shifts in the jet stream. Less frequent west–east dipoles in wave breaking anomalies for each basin are attributed to elongated and contracted regional jet exit regions. Finally, an analysis of long-duration AWB events for winter AZ buildup periods to an anomalously high AZ state is performed using a quasi-Lagrangian grid-shifting technique. North Pacific AWB events are shown to diabatically intensify the North Pacific jet exit region (increasing Northern Hemisphere AZ) through latent heating equatorward of the jet exit and radiative and evaporative cooling poleward of the jet exit.


2019 ◽  
Vol 147 (2) ◽  
pp. 409-431 ◽  
Author(s):  
Kevin A. Bowley ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Rossby wave breaking (RWB) events are a common feature on the dynamic tropopause and act to modulate synoptic-scale jet dynamics. These events are characterized on the dynamic tropopause by an irreversible overturning of isentropes and are coupled to troposphere-deep vertical motions and geopotential height anomalies. Prior climatologies have focused on the poleward streamer, the equatorward streamer, or the reversal in potential temperature gradient between the streamers, resulting in differences in the frequencies of RWB. Here, a new approach toward cataloging these events that captures both streamers is applied to the National Centers for Environmental Prediction Reanalysis-2 dataset for 1979–2011. Anticyclonic RWB (AWB) events are found to be nearly twice as frequent as cyclonic RWB (CWB) events. Seasonal decompositions of the annual mean find AWB to be most common in summer (40% occurrence), which is likely due to the Asian monsoon, while CWB is most frequent in winter (22.5%) and is likely due to the equatorward shift in mean baroclinicity. Trends in RWB from 1980 to 2010 illustrate a westward shift in North Pacific AWB during winter and summer (up to 0.4% yr−1), while CWB in the North Pacific increases in winter and spring (up to 0.2% yr−1). These changes are hypothesized to be associated with localized changes in the two-way interaction between the jet and RWB. The interannual variability of AWB and CWB is also explored, and a notable modality to the frequency of RWB is found that may be attributable to known low-frequency modes of variability including the Arctic Oscillation, the North Atlantic Oscillation, and the Pacific–North American pattern.


2020 ◽  
Vol 33 (15) ◽  
pp. 6731-6744
Author(s):  
Kazuto Takemura ◽  
Hitoshi Mukougawa ◽  
Shuhei Maeda

AbstractRossby wave propagation along the Asian jet during boreal summer, such as the Silk Road pattern, frequently causes wave breaking near the Asian jet exit region. This study examines the statistical relationship between interannual variability of the Rossby wave breaking frequency near Japan and large-scale atmospheric circulation during the boreal summer. The Rossby wave breaking frequency in the midlatitudes climatologically shows its maximum near Japan, and significantly increases during La Niña years. The upper-tropospheric circulation regressed onto the Rossby wave breaking frequency near Japan in August shows large-scale anomalous convergence from the tropical central to eastern Pacific and divergence around the Indian Ocean. The consequent northward anomalous divergent wind over Eurasia contributes to enhancement and northward shift of the Asian jet. The Asian jet also shows meridional meandering with a phase of anomalous anticyclonic circulation near Japan accompanied by the frequent Rossby wave breaking, which is associated with the Silk Road pattern. The frequent Rossby wave breaking is related to southwestward intrusion of anomalous low potential temperature air mass toward the subtropical western North Pacific associated with an enhanced mid-Pacific trough. West of the southwestward cold-air intrusion, enhanced cumulus convection is seen around the northern Philippines, and the Pacific–Japan pattern is significantly seen in the lower troposphere. This result is consistent with a previous study that revealed a linkage mechanism between the Rossby wave breaking near Japan and the Pacific–Japan pattern through dynamically induced ascent resulting in an intrusion of high potential vorticity associated with the Rossby wave breaking.


Author(s):  
Benjamin J. Moore ◽  
Allen B. White ◽  
Daniel J. Gottas

AbstractProlonged periods (e.g., several days or more) of heavy precipitation can result in sustained high-impact flooding. Herein, an investigation of long-duration heavy precipitation events (HPEs), defined as periods comprising ≥ 3 days with precipitation exceeding the climatological 95th percentile, is conducted for 1979–2019 for the U.S. West Coast, specifically Northern California. An objective flow-based categorization method is applied to identify principal large-scale flow patterns for the events. Four categories are identified and examined through composite analyses and case studies. Two of the categories are characterized by a strong zonal jet stream over the eastern North Pacific, while the other two are characterized by atmospheric blocking over the central North Pacific and the Bering Sea–Alaska region, respectively. The composites and case studies demonstrate that the flow patterns for the HPEs tend to remain in place for several days, maintaining strong baroclinicity and promoting occurrences of multiple cyclones in rapid succession near the West Coast. The successive cyclones result in persistent water vapor flux and forcing for ascent over Northern California, sustaining heavy precipitation. For the zonal jet patterns, cyclones affecting the West Coast tend to occur in the poleward jet exit region in association with cyclonic Rossby wave breaking. For the blocking patterns, cyclones tend to occur in association with anticyclonic Rossby wave breaking on the downstream flank of the block. For Bering Sea–Alaska blocking cases, cyclones can move into this region in conjunction with cyclonically breaking waves that extend into the eastern North Pacific from the upstream flank of the block.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Masayoshi Ishii ◽  
Nobuhito Mori

Abstract A large-ensemble climate simulation database, which is known as the database for policy decision-making for future climate changes (d4PDF), was designed for climate change risk assessments. Since the completion of the first set of climate simulations in 2015, the database has been growing continuously. It contains the results of ensemble simulations conducted over a total of thousands years respectively for past and future climates using high-resolution global (60 km horizontal mesh) and regional (20 km mesh) atmospheric models. Several sets of future climate simulations are available, in which global mean surface air temperatures are forced to be higher by 4 K, 2 K, and 1.5 K relative to preindustrial levels. Nonwarming past climate simulations are incorporated in d4PDF along with the past climate simulations. The total data volume is approximately 2 petabytes. The atmospheric models satisfactorily simulate the past climate in terms of climatology, natural variations, and extreme events such as heavy precipitation and tropical cyclones. In addition, data users can obtain statistically significant changes in mean states or weather and climate extremes of interest between the past and future climates via a simple arithmetic computation without any statistical assumptions. The database is helpful in understanding future changes in climate states and in attributing past climate events to global warming. Impact assessment studies for climate changes have concurrently been performed in various research areas such as natural hazard, hydrology, civil engineering, agriculture, health, and insurance. The database has now become essential for promoting climate and risk assessment studies and for devising climate adaptation policies. Moreover, it has helped in establishing an interdisciplinary research community on global warming across Japan.


2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.


2013 ◽  
Vol 140 (680) ◽  
pp. 738-753 ◽  
Author(s):  
Iñigo Gómara ◽  
Joaquim G. Pinto ◽  
Tim Woollings ◽  
Giacomo Masato ◽  
Pablo Zurita-Gotor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document