scholarly journals Optimal analysis of gear modification fitting in alternating time domain aiming at minimizing meshing-in impact of teeth-pair contact interface

Author(s):  
Xigui Wang ◽  
Yongmei Wang ◽  
Siyuan An ◽  
Jie Tang ◽  
Jiafu Ruan
1992 ◽  
Vol 5 (4) ◽  
pp. 171-178 ◽  
Author(s):  
R. de Beer ◽  
A. van den Boogaart ◽  
D. van Ormondt ◽  
W. W. F. Pijnappel ◽  
J. A. den Hollander ◽  
...  

1985 ◽  
Vol 17 (2-3) ◽  
pp. 247-258 ◽  
Author(s):  
M. S. Sheffer ◽  
M. Hiraoka ◽  
K. Tsumura

For the purpose of optimal modelling, a “Flexible Modelling” method was developed. A flexible set of models consisting of hierarchical mechanistic models derived from a highly detailed structured model by mechanistic simplification was obtained. The performance of a computer program with an algorithm for parameter fitting in the time domain was evaluated by use of simulation. The program was able to estimate the models' parameters, even when using data with different degrees of inaccuracy. A computer program for model selection was developed, whereby the model was selected according to the information required. It was found that for prediction of the dynamic behavior of the MLVSS, the simplest model can supply all the necessary information. For prediction of effluent substrate concentration, the differences between the models' predictions depend on the characteristics of the disturbances and on the values of the models' parameters. The selection of the proper model and updating its parameters can be done by a computer which uses the presented program for model selection and parameter fitting.


Author(s):  
C P Scott ◽  
A J Craven ◽  
C J Gilmore ◽  
A W Bowen

The normal method of background subtraction in quantitative EELS analysis involves fitting an expression of the form I=AE-r to an energy window preceding the edge of interest; E is energy loss, A and r are fitting parameters. The calculated fit is then extrapolated under the edge, allowing the required signal to be extracted. In the case where the characteristic energy loss is small (E < 100eV), the background does not approximate to this simple form. One cause of this is multiple scattering. Even if the effects of multiple scattering are removed by deconvolution, it is not clear that the background from the recovered single scattering distribution follows this simple form, and, in any case, deconvolution can introduce artefacts.The above difficulties are particularly severe in the case of Al-Li alloys, where the Li K edge at ~52eV overlaps the Al L2,3 edge at ~72eV, and sharp plasmon peaks occur at intervals of ~15eV in the low loss region. An alternative background fitting technique, based on the work of Zanchi et al, has been tested on spectra taken from pure Al films, with a view to extending the analysis to Al-Li alloys.


Sign in / Sign up

Export Citation Format

Share Document