Assessing Faba Bean Yield and Quality as Affected by Various Phosphorus Sources and Lithovit Levels

2021 ◽  
Vol 59 (2) ◽  
pp. 817-830
Author(s):  
AHMED SAAD ◽  
Rania S. M. Eid
2021 ◽  
Vol 24 (2) ◽  
pp. 171-176
Author(s):  
Mohamad Hussain ◽  
◽  
Rezan Mosa ◽  
Muradjan Noori ◽  
◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 703-712
Author(s):  
Victor D’Amico-Damião ◽  
Hugo D. Nunes ◽  
Pedro A. Couto ◽  
Leandro B. Lemos

Agriculture ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 253 ◽  
Author(s):  
Francesca De Cillis ◽  
Beniamino Leoni ◽  
Maria Massaro ◽  
Massimiliano Renna ◽  
Pietro Santamaria

Legumes crops play significant roles both in human diets and agriculture, and contribute to sustainable farming. In this study, we evaluated both some quality traits and yield of four landraces (Cegliese, Iambola, San Francesco, and FV5) of faba bean (Vicia faba L. var. major Harz) for fresh consumption in order to assess and distinguish the landraces also in comparison with two commercial varieties (Aguadulce supersimonia and Extra-early purple) by using a crop system without irrigation. Independently of the genotype, we obtained the same pods yield (1794 g m−2) without affecting the seed size. All genotypes can be considered a good source of vitamin C, although Extra-early purple and San Francesco reveal the highest content (703 and 646 mg 100 g−1 fresh weight—FW, respectively). Cegliese showed the highest L-dopa content (10.14 mg 100 g−1 FW), suggesting its use as a natural rich source of L-dopa (dopamine precursor used for Parkinson’s disease treatment) instead of using synthesized L-dopa. In conclusion, this study highlight interesting quality traits of faba bean when consumed as fresh vegetables, suggesting its positive role on human health and the possibility of its production by using local horticultural systems that are skilled in optimizing resource utilization.


2015 ◽  
Vol 3 (6) ◽  
pp. 539-547 ◽  
Author(s):  
Seif Gasim ◽  
Solafa A.A. Hamad ◽  
Awadalla Abdelmula ◽  
Isam A. Mohamed Ahmed

2015 ◽  
Vol 95 (4) ◽  
pp. 779-786 ◽  
Author(s):  
S. M. Ross ◽  
J. R. King ◽  
C. M. Williams ◽  
S. M. Strydhorst ◽  
M. A. Olson ◽  
...  

Ross, S. M., King, J. R., Williams, C. M., Strydhorst, S. M., Olson, M. A., Hoy, C. F. and Lopetinsky, K. J. 2015. The effects of three pulse crops on a second subsequent crop. Can. J. Plant Sci. 95: 779–786. Pulse crops can provide benefits to cropping systems, but few studies follow the effects beyond one subsequent crop. This study investigated the effects of three pulses on 2 yr of subsequent crops at Barrhead and St. Albert in central Alberta. In year 1 (YR1), field pea (Pisum sativum L.), faba bean (Vicia faba L.), lupin (Lupinus angustifolius L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) were grown without added N. The design included plus N controls, eight different crops in YR2, and barley in YR3. YR1 effects on YR3 barley varied between sites and years, and drought conditions in 2009 affected results. Effects of YR1 faba bean were greater than pea or lupin. Increases in YR3 barley grain yields averaged 11% (0.33 Mg ha–1) and increases in seed N yields averaged 11% (7.2 kg N ha–1) after YR1 faba bean, compared with after YR1 canola or barley without added N (BCO). Increases in YR3 barley grain yields and seed N yields averaged 3 to 5% after YR1 pea or lupin, compared with BCO.YR1 crops had few effects on YR3 barley P uptake. Results indicated that pulse crops can improve the yield and quality of a second subsequent crop.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 320 ◽  
Author(s):  
Ketema Tilahun Zeleke

Faba bean (Vicia faba L.) is an important pulse crop known for its nitrogen-fixing characteristics and as a disease-break crop in crop rotations. Sowing time, scheduling of supplemental irrigation, and sowing rate are some of the agronomic managements which affect faba bean growth and yield. The effect of these on faba bean yield can be evaluated using calibrated models. The Food and Agriculture Organization (FAO) AquaCrop model was calibrated and tested using two-year experimental data of different watering regimes, sowing dates, and sowing rates in a semiarid environment of South-Eastern Australia. AquaCrop adequately simulated the green canopy cover (CC), biomass development, grain yield, and soil water dynamics under different agronomic management conditions. AquaCrop simulated faba bean yield with 3% deviation, root mean square error (RMSE) of 0.49 t ha−1, normalised root mean square error (NRMSE) of 12.4%, index of agreement (d) of 0.95, and R2 of 0.86. The CC was simulated with RMSE of 14.1%, R2 of 0.85, and d of 0.90. The above-ground dry matter was predicted with RMSE of 2.6 t ha−1, R2 of 0.95, and d of 0.93. Except for end-of-season values, the total soil water was also adequately simulated at RMSE of 21 mm, R2 of 0.89, and d of 0.87. The response of faba bean to supplemental irrigation, sowing time, and sowing rate was adequately simulated by the calibrated model. AquaCrop is a valuable decision support tool for predicting faba bean growth, yield, and soil water dynamics under different agronomic managements.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 209 ◽  
Author(s):  
Przemysław Barłóg ◽  
Witold Grzebisz ◽  
Remigiusz Łukowiak

Faba bean seeds are regarded as a highly valuable protein source for human and animal nutrition. High yield and quality of faba bean require adequate mineral nutrition. The aim of the study was to assess the impact of potassium (K) and elemental sulfur (S) on crude protein (CP) and tannin content (TC) in seeds, crude protein yield (CPY), and amino acid (AA) composition. Field trials were carried out during 2010–2013 in the temperate climate of Central Europe. The study assessed the influence of the following factors: variable soil K content and fertilization (K1, K2, K3, and K4) and elemental S application (0, 25, and 50 kg S ha−1). Plants were harvested at two growth stages to obtain immature seeds and mature seeds. K and S applications did not have a significant impact on CP and AA composition, including sulfur AA content. The TC decreased in response to increasing content of plant-available K in soil. In respect to CPY, the results indicate a positive response of faba bean to increasing K content in soil. The effect of S fertilization depended on the K treatment. The most beneficial influence of S on CPY was registered on K-poor soil.


2018 ◽  
Vol 219 ◽  
pp. 87-97 ◽  
Author(s):  
Przemysław Barłóg ◽  
Witold Grzebisz ◽  
Remigiusz Łukowiak

Sign in / Sign up

Export Citation Format

Share Document