Cooling System Pipeline Corrosion Behavior After Reusing of Reverse Osmosis Reject Plant Water as Feed Water Source and Using a New Isatine Derivatives as Corrosion Inhibitors

2018 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Abdallah Negm ◽  
Abd elaziz Fouda ◽  
Rabab Shalof ◽  
Saad Mohamed ◽  
teriza youssif
2020 ◽  
Vol 25 (6) ◽  
pp. 819-829 ◽  
Author(s):  
Yong-Min Park ◽  
Kyung-Min Yeon ◽  
Chul-hwi Park

Reverse osmosis (RO) is the main process of current industrial desalination, and its performance is affected by the quality of water source. Natural water contains a certain level of silica, which is originated from metal silicate in the earth crust. Due to its complexity, silica fouling is difficult to control, which often causes less efficient design of RO system for safe operation. In the present work, we review the current state of silica treatment technology in RO desalination. Silica chemistry is investigated in standpoint of the scale formation mechanism among multiple forms of silica species and its synergistic interaction with other foulants such as organic matter. Then, pretreatment methods to remove silica in the RO feed water are outlined. They include softening/coagulation, seed precipitation/aggregation, tight ultrafiltration, ion exchange, adsorbents media, and electro coagulation. We finally highlight the mitigation of RO fouling under silica rich conditions, whose concept can be implemented in different ways of antiscalant dosing, high/low pH operation, and intermediate softening of the RO concentrate, respectively. This review will provide comprehensive information and insight about the optimal operation of industrial RO susceptible to silica fouling.


2018 ◽  
Vol 6 (6) ◽  
pp. 624-642 ◽  
Author(s):  
Iman Ebrahimi Ghoujdi ◽  
Hasti Hadiannasab ◽  
Mokhtar Bidi ◽  
Abbas Naeimi ◽  
Mohammad Hossein Ahmadi ◽  
...  

2013 ◽  
Vol 3 (3) ◽  
pp. 260-267
Author(s):  
Ho-Young Jeong ◽  
Yoon-Jin Kim ◽  
Ji-Hee Han ◽  
Dong-Ha Kim ◽  
Jinsik Sohn ◽  
...  

Wastewater reclamation is where wastewater from various sources is purified so the water can be used by human consumption. Among many treatment options, membranes have gained an important place in wastewater reclamation. It allows the production of high quality water from wastewater, with a small footprint and affordable energy consumption. Nevertheless, membrane fouling is regarded as a serious problem due to the high fouling potential of wastewater. In this study, we applied ultraviolet (UV) processes as a pretreatment for membrane systems that are used for wastewater reclamation. Low pressure UV (LUV) and pulsed UV (PUV) were used to decompose or alter the organics in the feed water of the membranes. Effluent organic matter was characterized by total organic carbon (TOC) and UV absorbance (UVA). Also the effect of UV pretreatment on membrane fouling was investigated for microfiltration (MF) and reverse osmosis (RO) processes. The pretreatment of membranes using LUV or PUV was effective to control fouling of hollow fiber MF membranes. This is probably because of the reduction and modification of organics after UV treatments. However, the effect of UV pretreatment on RO flux was less significant, which is attributed to low fouling prophecy after MF treatment.


Author(s):  
Jongho Lee ◽  
Sean O’Hern ◽  
Rohit Karnik ◽  
Tahar Laoui

This paper presents a concept for desalination by reverse osmosis (RO) using a vapor-trapping membrane. The membrane is composed of hydrophobic nanopores and separates the feed salt water and the fresh water (permeate) side. The feed water is vaporized by applied pressure and the water vapor condenses on the permeate side accompanied by recovery of latent heat. A probabilistic model was developed for transport of water vapor inside the nanopores, which predicted 3–5 times larger mass flux than conventional RO membranes at temperatures in the range of 30–50°C. An experimental method to realize short and hydrophobic nanopores is presented. Gold was deposited at the entrance of alumina pores followed by modification using an alkanethiol self-assembled monolayer. The membranes were tested for defective or leaking pores using a calcium ion indicator (Fluo-4). This method revealed the existence of defect-free areas in the 100–200 μm size range that are sufficient for flux measurement. Finally, a microfluidic flow cell was created for characterizing the transport properties of the fabricated membranes.


2020 ◽  
Vol 01 (02) ◽  
pp. 53-60
Author(s):  
Pronob Deb Nath ◽  
Kazi Mostafijur Rahman ◽  
Md. Abdullah Al Bari

This paper evaluates the thermal hydraulic behavior of a pressurized water reactor (PWR) when subjected to the event of Loss of Coolant Accident (LOCA) in any channel surrounding the core. The accidental break in a nuclear reactor may occur to circulation pipe in the main coolant system in a form of small fracture or equivalent double-ended rupture of largest pipe connected to primary circuit line resulting potential threat to other systems, causing pressure difference between internal parts, unwanted core shut down, explosion and radioactivity release into environment. In this computational study, LOCA for generation III+ VVER-1200 reactor has been carried out for arbitrary break at cold leg section with and without Emergency Core Cooling System (ECCS). PCTRAN, a thermal hydraulic model-based software developed using real data and computational approach incorporating reactor physics and control system was employed in this study. The software enables to test the consequences related to reactor core operations by monitoring different operating variables in the system control bar. Two types of analysis were performed -500% area break at cold leg pipe due to small break LOCA caused by malfunction of the system with and without availability of ECCS. Thermal hydraulic parameters like, coolant dynamics, heat transfer, reactor pressure, critical heat flux, temperature distribution in different sections of reactor core have also been investigated in the simulation. The flow in the reactor cooling system, steam generators steam with feed-water flow, coolant steam flow through leak level of water in different section, power distribution in core and turbine were plotted to analyze their behavior during the operations. The simulation showed that, LOCA with unavailability of Emergency Core Cooling System (ECCS) resulted in core meltdown and release of radioactivity after a specific time.


Author(s):  
S. Z. J. Zaidi ◽  
A. Shafeeq ◽  
M. Sajjad ◽  
S. Hassan ◽  
M. S. Aslam ◽  
...  

AbstractThe present study reports the characterization of reverse osmosis (RO) technology at water treatment plant Cogen-2 in paper and Board mills, Pakistan. RO is a commonly used process to obtain de-mineralized water for high-pressure boiler operation in thermal power plants. Scaling and fouling in three-stage RO plants is a major challenge in chemical industry due to the use of raw brackish water in the power plant of paper and board mills. In our study, the feed water quality of RO was changed from soft water to raw water to make it economical. The cleaning frequency was increased three times than normal, which was unsafe for operation and it was required to control scaling and fouling to achieve the desired result. Differential pressures behavior of all stages for 2-month data was observed without acid treatment, and the results of Langelier Saturation Index (LSI) control parameters (temperature, pH, total dissolved solids, calcium hardness, and alkalinity) clearly showed the abnormality. To optimize scaling and fouling of RO, the LSI factor was controlled in total reject water for the next 2 months by acid treatment in feed water. Duration of chemical cleaning and membranes’ life has been extended by fouling and scaling control. Understanding the effect of operational parameters in RO membranes is essential in water process engineering due to its broad applications in drinking water, sanitation, seawater, desalination process, wastewater treatment, and boiler feed water operation. The product flow increased from 18.3 to 19.9 m3/h, and this was due to a decrease in the rejection flow from 8.2 to 6.7 m3/h. The total reject stream pressure also increased from 8.1 to 9 bar. A lower value of LSI of 1.6 is obtained in the reject water stream after the acid treatment.


2019 ◽  
Vol 30 (6) ◽  
pp. 3323-3348
Author(s):  
Abbas Naeimi ◽  
Mohammad Hossein Ahmadi ◽  
Milad Sadeghzadeh ◽  
Alibakhsh Kasaeian

Purpose This paper aims to determine the optimum arrangement of a reverse osmosis system in two methods of plug and concentrate recycling. Design/methodology/approach To compare the optimum conditions of these two methods, a seawater reverse osmosis system was considered to produce fresh water at a rate of 4,000 m3/d for Mahyarkala city, located in north of Iran, for a period of 20 years. Using genetic algorithms and two-objective optimization method, the reverse osmosis system was designed. Findings The results showed that exergy efficiency in optimum condition for concentrate recycling and plug methods was 82.6 and 92.4 per cent, respectively. The optimizations results showed that concentrate recycling method, despite a 36 per cent reduction in the initial cost and a 2 per cent increase in maintenance expenses, provides 6 per cent higher recovery and 19.7 per cent less permeate concentration than two-stage plug method. Originality/value Optimization parameters include feed water pressure, the rate of water return from the brine for concentrate recycling system, type of SW membrane, feedwater flow rate and numbers of elements in each pressure vessel (PV). These parameters were also compared to each other in terms of recovery (R) and freshwater unit production cost. In addition, the exergy of all elements was analyzed by selecting the optimal mode of each system.


2007 ◽  
Vol 55 (5) ◽  
pp. 127-135 ◽  
Author(s):  
R. Devesa ◽  
R. Cardeñoso ◽  
L. Matía

The flavour profile analysis (FPA) panel of Aigües de Barcelona has participated in three engineering projects initiated to improve both the quality of the water supplied and the use of the scarce resources available. The information provided by the panel enables a solid evaluation of the organoleptic quality of the water produced in the facilities, which is very useful in making decisions concerning the development of the projects. The first project refers to the Besòs full scale nanofiltration pilot plant. The study includes characterisation of the organoleptic quality of the water obtained and the behaviour of blends in different proportions with water from the Ter river. Secondly, this article presents the results obtained in El Papiol pilot plant for the reduction of trihalomethanes in water from the Abrera WTP, situated by the Llobregat river. The tasting results indicate that the stripping treatment slightly improves the quality of water, whereas the improvement is more remarkable with carbon filtration. The third project was the reverse osmosis pilot plant installed in the Sant Joan Despí WTP, which also collects water from the Llobregat river. A gradual improvement of the water treated was clearly observed when increasing amounts of reverse osmosis treated water were added. Some trends were also observed according to the characteristics of the feed water to the reverse osmosis facilities.


Sign in / Sign up

Export Citation Format

Share Document