scholarly journals Silica treatment technologies in reverse osmosis for industrial desalination: A review

2020 ◽  
Vol 25 (6) ◽  
pp. 819-829 ◽  
Author(s):  
Yong-Min Park ◽  
Kyung-Min Yeon ◽  
Chul-hwi Park

Reverse osmosis (RO) is the main process of current industrial desalination, and its performance is affected by the quality of water source. Natural water contains a certain level of silica, which is originated from metal silicate in the earth crust. Due to its complexity, silica fouling is difficult to control, which often causes less efficient design of RO system for safe operation. In the present work, we review the current state of silica treatment technology in RO desalination. Silica chemistry is investigated in standpoint of the scale formation mechanism among multiple forms of silica species and its synergistic interaction with other foulants such as organic matter. Then, pretreatment methods to remove silica in the RO feed water are outlined. They include softening/coagulation, seed precipitation/aggregation, tight ultrafiltration, ion exchange, adsorbents media, and electro coagulation. We finally highlight the mitigation of RO fouling under silica rich conditions, whose concept can be implemented in different ways of antiscalant dosing, high/low pH operation, and intermediate softening of the RO concentrate, respectively. This review will provide comprehensive information and insight about the optimal operation of industrial RO susceptible to silica fouling.

Author(s):  
S.V. Gulienko

The urgent task is to research in detail the possibilities of operation of the reverse osmosis membrane in the conditions of changing various parameters, which include, first of all, the working pressure, the initial concentration of the cleaning solutions, as well as the working conditions and the complete set of cleaning stands with auxiliary filters: mechanical, ceramic and carbon, which improves the quality of water and increases the life of high-value reverse osmosis modules. Particular attention was paid in this series of experiments to the role of ceramic filters, since in the previous series of experiments the concentration of the solution did not change both after mechanical and after carbon filters. Therefore, it was decided to modernize the stand and use a ceramic filter in the flow chart. In this work the detailed scheme of bench-scale setup with using of ceramic and carbon filters and also reverse-osmosis module is represented. The experimental reseaches of purification of NaCl water solutions were carried out in wide range of concentrations (0,2∙10-3…6,5 g/l) and working pressures (0,2…0,65 MPa). The comparative characteristics of main process parameters with and without ceramic filter are represented. The experiments were carried out on a laboratory stand for complex purification of aqueous solutions by microfiltration, adsorption and reverse osmosis using the following process steps carried out in the respective apparatus.


2007 ◽  
Vol 55 (5) ◽  
pp. 127-135 ◽  
Author(s):  
R. Devesa ◽  
R. Cardeñoso ◽  
L. Matía

The flavour profile analysis (FPA) panel of Aigües de Barcelona has participated in three engineering projects initiated to improve both the quality of the water supplied and the use of the scarce resources available. The information provided by the panel enables a solid evaluation of the organoleptic quality of the water produced in the facilities, which is very useful in making decisions concerning the development of the projects. The first project refers to the Besòs full scale nanofiltration pilot plant. The study includes characterisation of the organoleptic quality of the water obtained and the behaviour of blends in different proportions with water from the Ter river. Secondly, this article presents the results obtained in El Papiol pilot plant for the reduction of trihalomethanes in water from the Abrera WTP, situated by the Llobregat river. The tasting results indicate that the stripping treatment slightly improves the quality of water, whereas the improvement is more remarkable with carbon filtration. The third project was the reverse osmosis pilot plant installed in the Sant Joan Despí WTP, which also collects water from the Llobregat river. A gradual improvement of the water treated was clearly observed when increasing amounts of reverse osmosis treated water were added. Some trends were also observed according to the characteristics of the feed water to the reverse osmosis facilities.


2018 ◽  
Vol 6 (6) ◽  
pp. 624-642 ◽  
Author(s):  
Iman Ebrahimi Ghoujdi ◽  
Hasti Hadiannasab ◽  
Mokhtar Bidi ◽  
Abbas Naeimi ◽  
Mohammad Hossein Ahmadi ◽  
...  

2013 ◽  
Vol 3 (3) ◽  
pp. 260-267
Author(s):  
Ho-Young Jeong ◽  
Yoon-Jin Kim ◽  
Ji-Hee Han ◽  
Dong-Ha Kim ◽  
Jinsik Sohn ◽  
...  

Wastewater reclamation is where wastewater from various sources is purified so the water can be used by human consumption. Among many treatment options, membranes have gained an important place in wastewater reclamation. It allows the production of high quality water from wastewater, with a small footprint and affordable energy consumption. Nevertheless, membrane fouling is regarded as a serious problem due to the high fouling potential of wastewater. In this study, we applied ultraviolet (UV) processes as a pretreatment for membrane systems that are used for wastewater reclamation. Low pressure UV (LUV) and pulsed UV (PUV) were used to decompose or alter the organics in the feed water of the membranes. Effluent organic matter was characterized by total organic carbon (TOC) and UV absorbance (UVA). Also the effect of UV pretreatment on membrane fouling was investigated for microfiltration (MF) and reverse osmosis (RO) processes. The pretreatment of membranes using LUV or PUV was effective to control fouling of hollow fiber MF membranes. This is probably because of the reduction and modification of organics after UV treatments. However, the effect of UV pretreatment on RO flux was less significant, which is attributed to low fouling prophecy after MF treatment.


Author(s):  
Jongho Lee ◽  
Sean O’Hern ◽  
Rohit Karnik ◽  
Tahar Laoui

This paper presents a concept for desalination by reverse osmosis (RO) using a vapor-trapping membrane. The membrane is composed of hydrophobic nanopores and separates the feed salt water and the fresh water (permeate) side. The feed water is vaporized by applied pressure and the water vapor condenses on the permeate side accompanied by recovery of latent heat. A probabilistic model was developed for transport of water vapor inside the nanopores, which predicted 3–5 times larger mass flux than conventional RO membranes at temperatures in the range of 30–50°C. An experimental method to realize short and hydrophobic nanopores is presented. Gold was deposited at the entrance of alumina pores followed by modification using an alkanethiol self-assembled monolayer. The membranes were tested for defective or leaking pores using a calcium ion indicator (Fluo-4). This method revealed the existence of defect-free areas in the 100–200 μm size range that are sufficient for flux measurement. Finally, a microfluidic flow cell was created for characterizing the transport properties of the fabricated membranes.


2018 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Nurul Ismillayli ◽  
Laili Mardiana ◽  
Rina Kurnianingsih ◽  
Dhony Hermanto ◽  
Fahrurazi Fahrurazi

Penerapan teknologi tepat guna tentang proses pengolahan air siap minum dengan menggunakan metode filtrasi, adsorpsi dan reverse osmosis telah dilakukan. Rancangan alat  pengelolaan air siap minum menggunakan kombinasi filtrasi-adsorpsi meliputi saringan pasir lambat (terdiri dari pasir silika, arang aktif, ijuk, kapas, dan kerikil) membran selulosa, granula karbon, karbon aktif, membran RO (reverse osmosis), dan lampu ultraviolet untuk desinfikasi. Penentuan beberapa parameter fisik (bau, warna), kimia (pH, Fe, nitrit, amonia, BOD5, COD, DO) dan biologi (bakteri E-coli) dari sumber air (irigasi) dan air hasil pemurnian dilakukan di Laboratorium Kimia Universitas Mataram dan Balai Laboratorium Kesehatan Pengujian dan Kalibrasi Provinsi NTB. Air siap minum yang dihasilkan memiliki kualitas sesuai dengan baku mutu air minum Peraturan Menteri Kesehatan Nomor 492/Menkes/Per/IV/2010 Tanggal 19 April 2010. Hasil uji organoleptik menunjukkan bahwa masyarakat menyukai air hasil pengolahan dan merespon positif terhadap alih teknologi pengolahan air. Pembangunan sentra pengelohan air siap minum diharapkan menjadi edukasi bagi masyarakat mengenai perilaku hidup bersih dan sehat. Implementation of appropriate technology on the process of potable water using filtration, adsorption and reverse osmosis methods has been done. Its design used a combination of filtration-adsorption includes slow sand filters (consisting of silica sand, activated charcoal, palm fiber, cotton, and gravel) cellulosic membranes, carbon granules, activated carbon, RO (reverse osmosis) membranes, and ultraviolet for disinfection. Determination of several physical (odor, color), chemical (pH, Fe, nitrite, ammonia, BOD5, COD, DO) and biological parameters (E-coli) of purified water were conducted at Chemical Laboratory of Mataram University and Health Laboratory Testing and Calibration Center of West Nusa Tenggara Province. The potable water produced has quality according to the quality standard of drinking water Regulation of the Minister of Health No. 492/Menkes/Per/IV/2010 Date April 19, 2010. The organoleptic test showed that the community responds positively to the knowledge transfer of water treatment technology. The construction of potable water center is expected to educate the public about clean and healthy living behaviorKata kunci: filtrasi, adsorpsi, reverse osmosis, air sungai, air siap minum


Author(s):  
S. Z. J. Zaidi ◽  
A. Shafeeq ◽  
M. Sajjad ◽  
S. Hassan ◽  
M. S. Aslam ◽  
...  

AbstractThe present study reports the characterization of reverse osmosis (RO) technology at water treatment plant Cogen-2 in paper and Board mills, Pakistan. RO is a commonly used process to obtain de-mineralized water for high-pressure boiler operation in thermal power plants. Scaling and fouling in three-stage RO plants is a major challenge in chemical industry due to the use of raw brackish water in the power plant of paper and board mills. In our study, the feed water quality of RO was changed from soft water to raw water to make it economical. The cleaning frequency was increased three times than normal, which was unsafe for operation and it was required to control scaling and fouling to achieve the desired result. Differential pressures behavior of all stages for 2-month data was observed without acid treatment, and the results of Langelier Saturation Index (LSI) control parameters (temperature, pH, total dissolved solids, calcium hardness, and alkalinity) clearly showed the abnormality. To optimize scaling and fouling of RO, the LSI factor was controlled in total reject water for the next 2 months by acid treatment in feed water. Duration of chemical cleaning and membranes’ life has been extended by fouling and scaling control. Understanding the effect of operational parameters in RO membranes is essential in water process engineering due to its broad applications in drinking water, sanitation, seawater, desalination process, wastewater treatment, and boiler feed water operation. The product flow increased from 18.3 to 19.9 m3/h, and this was due to a decrease in the rejection flow from 8.2 to 6.7 m3/h. The total reject stream pressure also increased from 8.1 to 9 bar. A lower value of LSI of 1.6 is obtained in the reject water stream after the acid treatment.


Sign in / Sign up

Export Citation Format

Share Document