scholarly journals Using of Nano - Selenium in Reducing the Negative Effects of High Temperature Stress on Chrysanthemum morifolium Ramat.

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Mayada K. Seliem ◽  
Yasser Hafez ◽  
Hassan El-Ramady
2016 ◽  
Vol 141 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Xi Shan ◽  
Heng Zhou ◽  
Ting Sang ◽  
Sheng Shu ◽  
Jin Sun ◽  
...  

We investigated the effects of exogenous spermidine (Spd) on the carbohydrate, nitrogen (N), and endogenous polyamine status of tomato (Solanum lycopersicum) seedlings exposed to high-temperature stress [38/28 °C (day/night)]. High-temperature stress reduced the contents of pyruvate and succinate and inhibited plant growth. The application of exogenous Spd alleviated the inhibition of plant growth induced by high temperature, and also led to an increase in pyruvate, citrate, and succinate levels. High temperature markedly increased the NH4+-N content and reduced the activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate dehydrogenase (GDH). Spd significantly alleviated the negative effects on NH4+-N assimilation induced by high-temperature stress. Moreover, Spd significantly increased the activities of NR and GDH in the high-temperature-stressed tomato leaves. In contrast, Spd application to high-temperature-stressed plant leaves counteracted high-temperature-induced mRNA expression changes in N metabolism. Spd significantly upregulated the transcriptional levels of NR, nitrite reductase, GS, GDH, and glutamate synthase (GOGAT). In addition, exogenous Spd significantly increased endogenous polyamines. These results suggest that Spd could improve carbohydrate and N status through regulating the gene expression and activity of key enzymes for N metabolism, thus confers the tolerance to high temperature on tomato seedlings.


2020 ◽  
Vol 53 (2) ◽  
Author(s):  
Khalil Ahmed Laghari ◽  
Abdul Jabbar Pirzada ◽  
Mahboob Ali Sial ◽  
Muhammad Athar Khan ◽  
Jamal Uddin Mangi

2020 ◽  
Vol 52 (5) ◽  
Author(s):  
De-Gong Wu ◽  
Qiu-Wen Zhan ◽  
Hai-Bing Yu ◽  
Bao-Hong Huang ◽  
Xin-Xin Cheng ◽  
...  

Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


2020 ◽  
Vol 16 (2) ◽  
pp. 18-23
Author(s):  
K. PRAVALLIKA ◽  
C. ARUNKUMAR ◽  
A. VIJAYKUMAR ◽  
R. BEENA ◽  
V. G. JAYALEKSHMI

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


2018 ◽  
pp. 985-990
Author(s):  
V. Hernández ◽  
P. Hellín ◽  
J. Fenoll ◽  
M.V. Molina ◽  
I. Garrido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document