scholarly journals IMPROVING TOLERABILITY OF TAXODIUM DISTICHUM SEEDLINGS TO WATER SALINITY AND IRRIGATION WATER DEFICIENCY I. EFFECT OF SALICYLIC ACID ON WATER STRESS

2019 ◽  
Vol 6 (1) ◽  
pp. 57-68
Author(s):  
F. Saadawy ◽  
M. Bahnasy ◽  
H. El-Feky
2020 ◽  
Vol 41 (5) ◽  
pp. 1507-1516
Author(s):  
Jackson Silva Nóbrega ◽  
◽  
Riselane de Lucena Alcântara Bruno ◽  
Francisco Romário Andrade Figueiredo ◽  
Toshik Iarley da Silva ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1316
Author(s):  
Abida Parveen ◽  
Muhammad Arslan Ashraf ◽  
Iqbal Hussain ◽  
Shagufta Perveen ◽  
Rizwan Rasheed ◽  
...  

The present work reports the assessment of the effectiveness of a foliar-spray of salicylic acid (SA) on growth attributes, biochemical characteristics, antioxidant activities and osmolytes accumulation in wheat grown under control (100% field capacity) and water stressed (60% field capacity) conditions. The total available water (TAW), calculated for a rooting depth of 1.65 m was 8.45 inches and readily available water (RAW), considering a depletion factor of 0.55, was 4.65 inches. The water contents corresponding to 100 and 60% field capacity were 5.70 and 1.66 inches, respectively. For this purpose, seeds of two wheat cultivars (Fsd-2008 and S-24) were grown in pots subjected to water stress. Water stress at 60% field capacity markedly reduced the growth attributes, photosynthetic pigments, total soluble proteins (TSP) and total phenolic contents (TPC) compared with control. However, cv. Fsd-2008 was recorded as strongly drought-tolerant and performed better compared to cv. S-24, which was moderately drought tolerant. However, water stress enhanced the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and membrane electrolyte leakage (EL) and modulated the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as accumulation of ascorbic acid (AsA), proline (Pro) and glycine betaine (GB) contents. Foliar-spray with salicylic acid (SA; 0, 3 mM and 6 mM) effectively mitigated the adverse effects of water stress on both cultivars. SA application at 6 mM enhanced the shoot and root length, as well as their fresh and dry weights, and improved photosynthetic pigments. SA foliage application further enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nonenzymatic antioxidants such as ascorbic acid and phenolics contents. However, foliar-spray of SA reduced MDA, H2O2 and membrane permeability in both cultivars under stress conditions. The results of the present study suggest that foliar-spray of salicylic acid was effective in increasing the tolerance of wheat plants under drought stress in terms of growth attributes, antioxidant defense mechanisms, accumulation of osmolytes, and by reducing membrane lipid peroxidation.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 264 ◽  
Author(s):  
Mohammad Hossein Mohammadi ◽  
Mahnaz Khataar

We developed a numerical model to predict soil salinity from knowledge of evapotranspiration rate, crop salt tolerance, irrigation water salinity, and soil hydraulic properties. Using the model, we introduced a new weighting function to express the limitation imposed by salinity on plant available water estimated by the integral water capacity concept. Lower and critical limits of soil water uptake by plants were also defined. We further analysed the sensitivity of model results to underlying parameters using characteristics given for corn, cowpea, and barley in the literature and two clay and sandy loam soils obtained from databases. Results showed that, between two irrigation events, soil salinity increased nonlinearly with decreasing soil water content especially when evapotranspiration and soil drainage rate were high. The salinity weighting function depended greatly on the plant sensitivity to salinity and irrigation water salinity. This research confirmed that both critical and lower limits (in terms of water content) of soil water uptake by plants increased with evapotranspiration rate and irrigation water salinity. Since the presented approach is based on a physical concept and well-known plant parameters, soil hydraulic characteristics, irrigation water salinity, and meteorological conditions, it may be useful in spatio-temporal modelling of soil water quality and quantity and prediction of crop yield.


Sign in / Sign up

Export Citation Format

Share Document