A simple numerical model to estimate water availability in saline soils

Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 264 ◽  
Author(s):  
Mohammad Hossein Mohammadi ◽  
Mahnaz Khataar

We developed a numerical model to predict soil salinity from knowledge of evapotranspiration rate, crop salt tolerance, irrigation water salinity, and soil hydraulic properties. Using the model, we introduced a new weighting function to express the limitation imposed by salinity on plant available water estimated by the integral water capacity concept. Lower and critical limits of soil water uptake by plants were also defined. We further analysed the sensitivity of model results to underlying parameters using characteristics given for corn, cowpea, and barley in the literature and two clay and sandy loam soils obtained from databases. Results showed that, between two irrigation events, soil salinity increased nonlinearly with decreasing soil water content especially when evapotranspiration and soil drainage rate were high. The salinity weighting function depended greatly on the plant sensitivity to salinity and irrigation water salinity. This research confirmed that both critical and lower limits (in terms of water content) of soil water uptake by plants increased with evapotranspiration rate and irrigation water salinity. Since the presented approach is based on a physical concept and well-known plant parameters, soil hydraulic characteristics, irrigation water salinity, and meteorological conditions, it may be useful in spatio-temporal modelling of soil water quality and quantity and prediction of crop yield.

Soil Systems ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 58
Author(s):  
Sarah A. Helalia ◽  
Ray G. Anderson ◽  
Todd H. Skaggs ◽  
Jirka Šimůnek

California is increasingly experiencing drought conditions that restrict irrigation deliveries to perennial nut crops such as almonds and pistachios. During drought, poorer quality groundwater is often used to maintain these crops, but this use often results in secondary salinization that requires skilled management. Process-based models can help improve management guidelines under these challenging circumstances. The main objective of this work was to assess seasonal soil salinity and root water uptake as a function of irrigation water salinity and annual rain amounts. The manuscript presents a comparison of three-year experimental and numerically simulated root zone salinities in and below the root zone of almond and pistachio drip-irrigated orchards at multiple locations in the San Joaquin Valley (SJV), California, with different meteorological characteristics. The HYDRUS-1D numerical model was calibrated and validated using field measurements of soil water contents and soil solute bulk electrical conductivities at four root zone depths and measured soil hydraulic conductivities. The remaining soil hydraulic parameters were estimated inversely. Observations and simulations showed that the effects of rain on root zone salinity were higher in fields with initially low salinities than in fields with high salinities. The maximum reduction in simulated root water uptake (7%) occurred in response to initially high soil salinity conditions and saline irrigation water. The minimum reduction in simulated water uptake (2.5%) occurred in response to initially low soil salinity conditions and a wet rain year. Simulated water uptake reductions and leaching fractions varied at early and late times of the growing season, depending on irrigation water salinity. Root water uptake reduction was highly correlated with the cumulative effects of using saline waters in prior years, more than salt leaching during a particular season, even when rain was sufficient to leach salts during a wet year.


Author(s):  
Edvaldo B. Santana Júnior ◽  
Eugênio F. Coelho ◽  
Karoline S. Gonçalves ◽  
Jailson L. Cruz

ABSTRACT The purpose of the study was to evaluate the effect of salinity levels of irrigation water on physiology and growth of banana cultivars during the vegetative stage. The experiment was carried out following a completely randomized design in split plots, with four levels of salinity in irrigation water (0.5, 2.0, 3.0 and 4.0 dS m-1) and four banana cultivars (Pacovan, Prata Anã, BRS Platina and Princesa) with three repetitions. Stomatal conductance, transpiration, relative water content, leaf water potential and proline concentration were evaluated at 150 days after transplanting (DAT), besides plant height, stem diameter and leaf area. All variables showed sensitivity to the increase of salinity level of irrigation water. The results of soil water extraction, relative water content in leaf (RWC), leaf water potential and proline content differed (p ≤ 0.05) among the cultivars. Prata Anã and BRS Platina cultivars were the ones with lowest sensitivity, while Pacovan and BRS Princesa cultivars showed larger variation of soil water extraction and RWC with the increase in irrigation water salinity (electrical conductivity), being considered the ones of highest sensitivity to salinity in this study. Banana crop growth as a consequence of physiological effects was inhibited by the increase in water salinity, mainly in “BRS Princesa” cultivar.


2021 ◽  
Vol 13 (6) ◽  
pp. 1047
Author(s):  
Reda Amer

Water scarcity in arid and semiarid regions has resulted in using of low-quality waters for crop irrigation. This study aims to investigate the spatial relationship of low-quality irrigation water and waterlogging in arid and semiarid environments. The multi-decadal (1990–2020) time series Landsat images and hadrochemical water analysis were employed within geographical information system mapping (GIS) to understand the relationship between irrigation water, soil salinity, and waterlogging in the western Nile Delta, Egypt. The normalized difference water index (NDWI) and the normalized difference vegetation index (NDVI) from the Landsat images were combined to quantify the Spatiotemporal changes in the croplands and waterlogging from 1990 to 2020. ArcGIS inverse distance weighted (IDW) interpolation was used to create spatial layers of irrigation water salinity from electrical conductivity (EC), sodium adsorption ratio (SAR), and soluble sodium percentage (Na%). The results demonstrated a significant spatial relationship between waterlogging and EC, SAR, and Na% in irrigation groundwater. Long-term irrigation with high salinity groundwater led to increased soil salinity, low soil permeability, and waterlogging. This study offers a time- and cost-efficient geospatial method for regional monitoring of surface waterlogging and mitigation strategies for cropland degradation and agricultural drainage water recycling that would benefit stakeholders and decision-makers.


Irriga ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 29-36
Author(s):  
Márcio José de Santana ◽  
Jacinto De Assunção Carvalho ◽  
Messias José Bastos de Andrade ◽  
Elio Lemos da Silva

DESENVOLVIMENTO DO FEIJOEIRO (Phaseolus vulgaris L. cv ESAL 686) SOB IRRIGAÇÃO COM ÁGUA SALINA  Márcio José de Santana Jacinto de Assunção CarvalhoDepartamento de Engenharia, Universidade Federal de Lavras, Lavras, MG. CP 37, CEP 37200-000Messias José Bastos de AndradeDepartamento de Agricultura, Universidade Federal de Lavras, Lavras, MG. CP 37, CEP 37200-000Elio Lemos da SilvaDepartamento de Engenharia, Universidade Federal de Lavras, Lavras, MG. CP 37, CEP 37200-000  1 RESUMO  Foram avaliados os efeitos de concentrações de sais da água de irrigação sobre o comportamento vegetativo e produtivo do feijoeiro (Phaseolus vulgaris L. cv ESAL 686) e acúmulo de sais no solo. O experimento foi conduzido em casa de vegetação no Departamento de Engenharia da Universidade Federal de Lavras, em Lavras - MG, em delineamento inteiramente casualizado , com seis repetições e cinco níveis de salinidade da água: 0,10; 1,0; 2,5; 4,0 e 5,5 dS m-1. Os parâmetros vegetativos e produtivos foram negativamente influenciados pela salinidade da água de irrigação. Verificou-se também que a salinidade do solo aumentou com o aumento dos níveis em salinidade da água. As maiores salinidades da água de irrigação resultaram em menores consumos de água pelas plantas.  UNITERMOS: Feijão comum, salinidade da água, salinidade do solo.  SANTANA, M. J.; CARVALHO, J. A.; ANDRADE, M. J. B.; SILVA, E. L. DEVELOPMENT OF THE BEAN PLANT (PHASEOLUS VULGARIS L. CV ESAL 686) UNDER DIFFERENT IRRIGATION WATER SALINITY LEVELS  2 ABSTRACT  It was evaluated the effects of salt concentration in irrigation water on vegetative and productive behavior of the bean plant ( Phaseolus vulgaris L. cv. ESAL 686) and salt accumulation in the soil. The experiment was carried out in a greenhouse at the Engineering Department of Lavras Federal University, Lavras-MG, in a complete randomized design with six replications and five water salinity levels: 0.10; 1.0; 2.5; 4.0 and 5.5 dS m-1. The vegetative and productive parameters were negatively affected by the irrigation water salinity. It was also verified a soil salinity increase as salinity levels increase in the irrigation water. The highest water salinity level caused the lowest water consumption by plants.  KEYWORDS: French bean, irrigation water salinity, soil salinity


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Hamza Bouras ◽  
Redouane Choukr-Allah ◽  
Younes Amouaouch ◽  
Ahmed Bouaziz ◽  
Krishna Prasad Devkota ◽  
...  

Soil salinity is a major problem in arid and semi-arid regions, causing land degradation, desertification, and subsequently, food insecurity. Salt-affected soils and phosphorus (P) deficiency are the common problems in the sub-Sahara, including the Southern region of Morocco. Soil salinity limits plant growth by limiting water availability, causing a nutritional imbalance, and imparting osmotic stress in the plants. The objective of this study was to determine the positive effects of P on growth and productivity and understand the major leaf mineral nutrient content of quinoa (Chenopodium quinoa Willd.) cv. “ICBA Q5” irrigated with saline water. A field experiment applying three salinity (Electrical Conductivity, EC) levels of irrigation water (ECw = 5, 12, and 17 dS·m−1) and three P fertilizer rates (0, 60, and 70 kg of P2O5 ha−1) were evaluated in a split-plot design with three replications. The experiment was conducted in Foum El Oued, South of Morocco on sandy loam soil during the period of March–July 2020. The results showed that irrigation with saline water significantly reduced the final dry biomass, seed yield, harvest index, and crop water productivity of quinoa; however, P application under saline conditions minimized the effect of salinity and improved the yield. The application of 60 and 70 kg of P2O5 ha−1 increased (p < 0.05) the seed yield by 29 and 51% at low salinity (5 dS·m−1), by 16 and 2% at medium salinity (12 dS·m−1), and by 13 and 8% at high salinity (17 dS·m−1), respectively. The leaf Na+ and K+ content and Na+/K+ ratio increased with irrigation water salinity. However, the leaf content of Mg, Ca, Zn, and Fe decreased under high salinity. It was also found that increasing P fertilization improved the essential nutrient content and nutrient uptake. Our finding suggests that P application minimizes the adverse effects of high soil salinity and can be adopted as a coping strategy under saline conditions.


HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 463-467 ◽  
Author(s):  
J.M. Fu ◽  
A.J. Koski ◽  
Y.L. Qian

Salt problems in turfgrass sites are becoming more common. The effects of mowing management on salinity tolerance are not well understood. The objective of this study was to examine the effects of three mowing regimes on turf quality and growth responses of `L-93' creeping bentgrass (Agrostis palustris L.) to salinity stress. Sods of `L-93' creeping bentgrass were grown in containers (45 cm long and 10 cm in diameter) in a greenhouse. Treatments included three mowing regimes (clipping three times weekly at 25.4 mm, four times at 12.7 mm, and daily at 6.4 mm) and four levels of irrigation water salinity (control, 5, 10, and 15 dS·m-1). The relationship of increasing soil salinity with increasing irrigation water salinity was linear in each soil layer. Increasing salinity reduced turf quality and clipping yield more severely and rapidly when mowed at 6.4 mm than at 12.7 or 25.4 mm. Regression analysis of soil salinity and turf quality suggested that turf quality of creeping bentgrass mowed to 6.4, 12.7, and 25.4 mm fell to an unacceptable level when soil salinity reached 4.1, 12.5, and 13.9 dS·m-1, respectively. Data on turf quality, clipping yield, and verdure indicated that salinity damage becomes more severe under close mowing conditions and that a moderate increase in mowing height could improve salinity tolerance of creeping bentgrass.


Sign in / Sign up

Export Citation Format

Share Document