scholarly journals Detection of a mosaic hidden behind a plaster layer by IR thermography

Author(s):  
A. Mazioud ◽  
L. Ibos ◽  
J. Dumoulin
Author(s):  
Lény Baczkowski ◽  
Franck Vouzelaud ◽  
Dominique Carisetti ◽  
Nicolas Sarazin ◽  
Jean-Claude Clément ◽  
...  

Abstract This paper shows a specific approach based on infrared (IR) thermography to face the challenging aspects of thermal measurement, mapping, and failure analysis on AlGaN/GaN high electron-mobility transistors (HEMTs) and MMICs. In the first part of this paper, IR thermography is used for the temperature measurement. Results are compared with 3D thermal simulations (ANSYS) to validate the thermal model of an 8x125pm AIGaN/GaN HEMT on SiC substrate. Measurements at different baseplate temperature are also performed to highlight the non-linearity of the thermal properties of materials. Then, correlations between the junction temperature and the life time are also discussed. In the second part, IR thermography is used for hot spot detection. The interest of the system for defect localization on AIGaN/GaN HEMT technology is presented through two case studies: a high temperature operating life test and a temperature humidity bias test.


2015 ◽  
Vol 23 (1) ◽  
Author(s):  
A. Bendada ◽  
S. Sfarra ◽  
C. Ibarra−Castanedo ◽  
M. Akhloufi ◽  
J.−P. Caumes ◽  
...  

AbstractInfrared (IR) reflectography has been used for many years for the detection of underdrawings on panel paintings. Advances in the fields of IR sensors and optics have impelled the wide spread use of IR reflectography by several recognized Art Museums and specialized laboratories around the World. The transparency or opacity of a painting is the result of a complex combination of the optical properties of the painting pigments and the underdrawing material, as well as the type of illumination source and the sensor characteristics. For this reason, recent researches have been directed towards the study of multispectral approaches that could provide simultaneous and complementary information of an artwork. The present work relies on non−simultaneous multispectral inspection using a set of detectors covering from the ultraviolet to the terahertz spectra. It is observed that underdrawings contrast increases with wavelength up to 1700 nm and, then, gradually decreases. In addition, it is shown that IR thermography, i.e., temperature maps or thermograms, could be used simultaneously as an alternative technique for the detection of underdrawings besides the detection of subsurface defects.


2020 ◽  
Vol 1709 ◽  
pp. 012018
Author(s):  
E L Loboda ◽  
M V Agafontsev ◽  
A S Klimentiev ◽  
D P Kasymov ◽  
Y A Loboda ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Teresa Palomar ◽  
Miguel Silva ◽  
Marcia Vilarigues ◽  
Isabel Pombo Cardoso ◽  
David Giovannacci

Abstract This work presents the results of the evaluation of two Art Nouveau glass windows from the Casa-Museu Dr. Anastácio Gonçalves (Lisbon, Portugal) with IR-thermography during the summer solstice. According to the measurements, the surface temperature of glass depended on the outdoor environmental temperature and, mainly, on the direct solar radiation. Colored glasses presented a higher surface temperature due to the absorption of their chromophores at near-IR wavelengths. Enamels and grisailles showed higher surface temperatures than their support glasses due to both their chemical composition and color. The protective glazing, with small slits in one of the window panels, induced a hot-air pocket in its upper part due to the insufficient ventilation.


2021 ◽  
Author(s):  
Farnoos Farrokhi

The International Technology Roadmap for Silicon (ITRS) predicted that by the year 2016, a high-performance chip could dissipate as much as 300 W/cm² of heat. Another more noticeable thermal issue in IC's is the uneven temperature distribution. Increased power dissipation and greater temperature variation highlight the need for electrothermal analysis of electronic components. The goal of this research is to develop an experimental infrared measurement technique for the thermal and electrothermal analysis of electronic circuits. The objective of the electrothermal analysis is to represent the behavior of the temperature dependent characteristics of electronic device in near real work condition. An infrared (IR) thermography setup to perform the temperature distribution analysis and power dissipation measurement of the device under test is proposed in this reasearch. The system is based on a transparent oil heatsink which captures the thermal profile and run-time power dissipation from the device under test with a very fine degree of granularity. The proposed setup is used to perform the thermal analysis and power measurement of an Intel Dual Core E2180 processor. The power dissipation of the processor is obtained by calculating and measuring the heat transfer coefficient of the oil heatsink. Moreover, the power consumption of the processor is measured by isolating the current used by the CPU at run time. A three-dimensional fininte element thermal model is developed to simulate the thermal properties of the processor. The results obtained using this simulation is compared to the experimental results from IR thermography. A methodology to perform electrothermal analysis on integrated circuits is introduced. This method is based on coupling a standard electrical simulator, which is often used in the design process, and IR thermography system through an efficient interface program. The proposed method is capable of updating the temperature dependent parameters of device in near real time. The proposed method is applied to perform electrothermal analysis of a power MOSFET to measure the temperature distribution and the device performance. The DC characteristics of the device are investigated. The obtained results indicated that the operating point, I-V characteristics and power dissipation of the MOSFET vary significantly with temperature.


Sign in / Sign up

Export Citation Format

Share Document