scholarly journals Isolation of high-quality RNA from plant seeds

2021 ◽  
Vol 66 (2) ◽  
Author(s):  
Alisa Mishko ◽  
Maria Sundyreva ◽  
Ilya Stepanov ◽  
Sergey Efimenko ◽  
Vladimir Plotnikov ◽  
...  

The apple (Malus domestica Borkh.) is one of the major fruit tree crops, but it hasn’t been well-studied as a breeding object for molecular investigations. It is important to develop reliable and rapid methods that allow the preparation of plant material for future research. We introduce a quick and simple method for isolating high-quality RNA from lipid-rich apple seeds (M. domestica cv. Golden Delicious). Our method does not employ highly toxic reagents, because we exclude phenol, 2-mercaptoethanol and others. The chemical composition of the extraction buffer is simple and has a minimum level of toxicity. We showed that, in chaotropic conditions (i.e., with lithium chloride-urea), silica (SiO2) can bind with the lipids and RNA will remain in the solution. The extracted RNA was of high quality and we successfully used it for synthesizing cDNA and RT-PCR. The protocol developed by us can be useful for researchers working with RNA extraction from plant seeds.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amaranatha R. Vennapusa ◽  
Impa M. Somayanda ◽  
Colleen J. Doherty ◽  
S. V. Krishna Jagadish

Abstract Using existing protocols, RNA extracted from seeds rich in starch often results in poor quality RNA, making it inappropriate for downstream applications. Though some methods are proposed for extracting RNA from plant tissue rich in starch and other polysaccharides, they invariably yield less and poor quality RNA. In order to obtain high yield and quality RNA from seeds and other plant tissues including roots a modified SDS-LiCl method was compared with existing methods, including TRIZOL kit (Invitrogen), Plant RNeasy mini kit (Qiagen), Furtado (2014) method, and CTAB-LiCl method. Modifications in the extraction buffer and solutions used for RNA precipitation resulted in a robust method for extracting RNA in seeds and roots, where extracting quality RNA is challenging. The modified SDS-LiCl method revealed intense RNA bands through gel electrophoresis and a nanodrop spectrophotometer detected ratios of ≥ 2 and 1.8 for A260/A230 and A260/A280, respectively. The absence of starch co-precipitation during RNA extraction resulted in enhanced yield and quality of RNA with RIN values of 7–9, quantified using a bioanalyzer. The high-quality RNA obtained was demonstrated to be suitable for downstream applications, such as cDNA synthesis, gene amplification, and RT-qPCR. The method was also effective in extracting RNA from seeds of other cereals including field-grown sorghum and corn. The modified SDS-LiCl method is a robust and highly reproducible RNA extraction method for plant tissues rich in starch and other secondary metabolites. The modified SDS-LiCl method successfully extracted high yield and quality RNA from mature, developing, and germinated seeds, leaves, and roots exposed to different abiotic stresses.


2020 ◽  
Author(s):  
Xiaofang Liao ◽  
Hongwei Li ◽  
Aziz Khan ◽  
Yanhong Zhao ◽  
Wenhuan Hou ◽  
...  

AbstractThe isolation of high-quality RNA from kenaf is crucial for genetic and molecular biology studies. However, high levels of polysaccharide and polyphenol compounds in kenaf tissues could irreversibly bind to and coprecipitate with RNA, which complicates RNA extraction. In the present study, we proposed a simplified, time-saving and low-cost extraction method for isolating high quantities of high-quality RNA from several different kenaf tissues. RNA quality was measured for yield and purity, and the proposed protocol yielded high quantities of RNA (10.1-12.9 μg/g·FW). Spectrophotometric analysis showed that A260/280 ratios of RNA samples were in the range of 2.11 to 2.13, and A260/230 ratios were in the range of 2.04-2.24, indicating that the RNA samples were free of polyphenols, polysaccharides, and protein contaminants after isolation. The method of RNA extraction presented here was superior to the conventional CTAB method in terms of RNA isolation efficiency and was more sample-adaptable and cost-effective than commercial kits. Furthermore, to confirm downstream amenability, the high-quality RNA obtained from this method was successfully used for RT-PCR, real-time RT-PCR and Northern blot analysis. We provide an efficient and low-cost method for extracting high quantities of high-quality RNA from plants that are rich in polyphenols and polysaccharides, and this method was also validated for the isolation of high-quality RNA from other plants.


2021 ◽  
Author(s):  
Zubair Ahmad Wani ◽  
Umer Majeed Wani ◽  
Aabid M Koul ◽  
Asif Amin ◽  
Basit Amin Shah ◽  
...  

Abstract Isolating high quality RNA is a basic requirement while performing high throughput sequencing, microarray and various other molecular investigations. However, it has been quite challenging to isolate RNA with absolute purity from plants like Crocus sativus that are rich in secondary metabolites, polysaccharides and other interfering compounds which often irreversibly co-precipitate with the RNA. While many methods have been proposed for RNA extraction that include CTAB, TriZol, SDS based methods, they invariably yield less and poor quality RNA. In the present study we made certain changes in the available protocols including modifications in the extraction buffer and procedure viz-a-viz solutions used for precipitation of RNA. Our method led to the isolation of clear and non-dispersive total RNA with an RNA Integrity Number (RIN) greater than 7.5. The quality of the RNA was further assessed by qPCR based amplification of mature miRNAs such as Cs-MIR166c and Cs- MIR396a. In conclusion, the study describes an efficient method of RNA extraction that is highly ideal for high throughput sequencing of small RNAs.


2011 ◽  
Vol 21 (2) ◽  
pp. 207-211 ◽  
Author(s):  
Niaz Mahmood ◽  
Razib Ahmed ◽  
Muhammad Shafiul Azam ◽  
Haseena Khan

High quality RNA extraction is a prerequisite for various types of genetic analyses. Many a time, the existing RNA isolation methods and commercial kits are either time consuming or fail to isolate high quality RNA from plants rich in polysaccharides, oil and other secondary metabolites since different plants contain different amounts of nucleic acids (Khan et al. 2004, Loomis 1974). This problem is particularly acute in case of jute (Corchorus spp.), which is rich in mucilage and other polysaccharides that tends to interfere with the downstream processes (Kundu et al. 2011, Pandey et al. 1996). Several guanidium salt based methods have been successful for RNA isolation from jute seedlings (Khan et al. 2004), but are often cumbersome and expensive; hence limit simultaneous processing of large number of samples. Here we report a simplified and swift protocol for isolating high quality RNA from jute by making key modifications in tissue denaturation and precipitation steps in the protocol described by Ghawana et al. (2011). The protocol allows consistent production of high quality RNA from different species, which makes it particularly suitable for comparative plant genome research. The extraction time has been reduced from two days (for standard guanidium-acid-phenol extraction protocols) to about one hour and the extracted RNA was suitable for downstream processes like cDNA synthesis and expression pattern analysis.   Key words: Jute, Corchorus spp., Swift method, RNA isolation, RT-PCR   D. O. I. 10.3329/ptcb.v21i2.10244   Plant Tissue Cult. & Biotech. 21(2): 207-211, 2011 (December) - Short communication


2020 ◽  
Vol 115 (1) ◽  
pp. 53
Author(s):  
Fatemeh RAHMANI ◽  
Leila AMRAEE

<p>Ribonucleic acid (RNA) quality and integrity are crucial for many studies in plant molecular biology. High-quality RNA extraction from plants with high levels of compounds such as polysaccharides, polyphenols, and other secondary metabolites are problematic. RNA extraction from Lemon balm tissues can be difficult due to the presence of polyphenolic and polysaccharide compounds or can be done by expensive protocols. This study shows improvement of a CTAB-based protocol which allows rapid and easy isolation of high-quality RNA from Lemon balm plant. The RNA obtained is suitable for cDNA synthesis and RT-PCR experiments.</p>


1999 ◽  
Vol 277 (1) ◽  
pp. H413-H416 ◽  
Author(s):  
Regina Preisig-Müller ◽  
Michael Mederos y Schnitzler ◽  
Christian Derst ◽  
Jürgen Daut

A simple method for analyzing the differential gene expression of coronary endothelial cells and cardiac muscle cells was developed. Cells were isolated from guinea pig hearts by collagenase digestion. In the diluted cell suspension, single cardiomyocytes and capillary fragments containing 6–15 endothelial cells could be identified morphologically. A simple “cell picker” was constructed using a polyethylene pipette with a tip diameter of ∼150 μm that was attached to a micromanipulator and connected to an electric miniature valve. Intermittent suction pulses (1- to 2-cm water column) were applied by opening the valve for 100–200 ms at 1-s intervals. Cardiomyocytes (800–1,000) or capillary fragments (150) were picked under visual control using an inverted microscope. The cells were transferred to a reaction tube for RNA extraction, reverse transcription (RT), and DNA amplification (RT-PCR) with gene-specific and intron-spanning primers. All PCR products were verified by sequencing. Troponin T and endothelin-1 were found to be specific markers for guinea-pig cardiac muscle cells and coronary endothelial cells, respectively.


2017 ◽  
Author(s):  
Karina Schumann

After committing an offense, a transgressor faces an important decision regarding whether and how to apologize to the person who was harmed. The actions he or she chooses to take after committing an offense can have dramatic implications for the victim, the transgressor, and their relationship. Although high quality apologies are extremely effective at promoting reconciliation, transgressors often choose to offer a perfunctory apology, withhold an apology, or respond defensively to the victim. Why might this be? In this article, I propose three major barriers to offering high quality apologies: (1) low concern for the victim or relationship, (2) perceived threat to self-image, and (3) perceived apology ineffectiveness. I review recent research examining how these barriers affect transgressors’ apology behavior, and describe insights this emerging work provides for developing methods to move transgressors towards more reparative behavior. Finally, I discuss important directions for future research.


Author(s):  
Mahmoud Ahmed Ebada ◽  
Ahmed Wadaa Allah ◽  
Eshak Bahbah ◽  
Ahmed Negida

: Coronavirus Disease (COVID-19) pandemic has affected more than seven million individuals in 213 countries worldwide with a basic reproduction number ranging from 1.5 to 3.5 and an estimated case fatality rate ranging from 2% to 7%. A substantial proportion of COVID-19 patients are asymptomatic; however, symptomatic cases might present with fever, cough, and dyspnoea or severe symptoms up to acute respiratory distress syndrome. Currently, RNA RT-PCR is the screening tool, while bilateral chest CT is the confirmatory clinical diagnostic test. Several drugs have been repurposed to treat COVID-19, including chloroquine or hydroxychloroquine with or without azithromycin, lopinavir/ritonavir combination, remdesivir, favipiravir, tocilizumab, and EIDD-1931. Recently, Remdesivir gained FDA emergency approval based on promising early findings from the interim analysis of 1063 patients. The recently developed serology testing for SARSCoV-2 antibodies opened the door to evaluate the actual burden of the disease and to determine the rate of the population who have been previously infected (or developed immunity). This review article summarizes current data on the COVID-19 pandemic starting from the early outbreak, viral structure and origin, pathogenesis, diagnosis, treatment, discharge criteria, and future research.


2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Allen Wing-Ho Chu ◽  
Cyril Chik-Yan Yip ◽  
Wan-Mui Chan ◽  
Anthony Chin-Ki Ng ◽  
Dream Lok-Sze Chan ◽  
...  

SARS-CoV-2 RT-PCR with pooled specimens has been implemented during the COVID-19 pandemic as a cost- and manpower-saving strategy for large-scale testing. However, there is a paucity of data on the efficiency of different nucleic acid extraction platforms on pooled specimens. This study compared a novel automated high-throughput liquid-based RNA extraction (LRE) platform (PHASIFYTM) with a widely used magnetic bead-based total nucleic acid extraction (MBTE) platform (NucliSENS® easyMAG®). A total of 60 pools of nasopharyngeal swab and 60 pools of posterior oropharyngeal saliva specimens, each consisting of 1 SARS-CoV-2 positive and 9 SARS-CoV-2 negative specimens, were included for the comparison. Real-time RT-PCR targeting the SARS-CoV-2 RdRp/Hel gene was performed, and GAPDH RT-PCR was used to detect RT-PCR inhibitors. No significant differences were observed in the Ct values and overall RT-PCR positive rates between LRE and MBTE platforms (92.5% (111/120] vs 90% (108/120]), but there was a slightly higher positive rate for LRE (88.3% (53/60]) than MBTE (81.7% (49/60]) among pooled saliva. The automated LRE method is comparable to a standard MBTE method for the detection of SAR-CoV-2 in pooled specimens, providing a suitable alternative automated extraction platform. Furthermore, LRE may be better suited for pooled saliva specimens due to more efficient removal of RT-PCR inhibitors.


Sign in / Sign up

Export Citation Format

Share Document