scholarly journals A Simple and Swift Method for Isolating High Quality RNA from Jute (Corchorus spp.)

2011 ◽  
Vol 21 (2) ◽  
pp. 207-211 ◽  
Author(s):  
Niaz Mahmood ◽  
Razib Ahmed ◽  
Muhammad Shafiul Azam ◽  
Haseena Khan

High quality RNA extraction is a prerequisite for various types of genetic analyses. Many a time, the existing RNA isolation methods and commercial kits are either time consuming or fail to isolate high quality RNA from plants rich in polysaccharides, oil and other secondary metabolites since different plants contain different amounts of nucleic acids (Khan et al. 2004, Loomis 1974). This problem is particularly acute in case of jute (Corchorus spp.), which is rich in mucilage and other polysaccharides that tends to interfere with the downstream processes (Kundu et al. 2011, Pandey et al. 1996). Several guanidium salt based methods have been successful for RNA isolation from jute seedlings (Khan et al. 2004), but are often cumbersome and expensive; hence limit simultaneous processing of large number of samples. Here we report a simplified and swift protocol for isolating high quality RNA from jute by making key modifications in tissue denaturation and precipitation steps in the protocol described by Ghawana et al. (2011). The protocol allows consistent production of high quality RNA from different species, which makes it particularly suitable for comparative plant genome research. The extraction time has been reduced from two days (for standard guanidium-acid-phenol extraction protocols) to about one hour and the extracted RNA was suitable for downstream processes like cDNA synthesis and expression pattern analysis.   Key words: Jute, Corchorus spp., Swift method, RNA isolation, RT-PCR   D. O. I. 10.3329/ptcb.v21i2.10244   Plant Tissue Cult. & Biotech. 21(2): 207-211, 2011 (December) - Short communication

2020 ◽  
Author(s):  
Xiaofang Liao ◽  
Hongwei Li ◽  
Aziz Khan ◽  
Yanhong Zhao ◽  
Wenhuan Hou ◽  
...  

AbstractThe isolation of high-quality RNA from kenaf is crucial for genetic and molecular biology studies. However, high levels of polysaccharide and polyphenol compounds in kenaf tissues could irreversibly bind to and coprecipitate with RNA, which complicates RNA extraction. In the present study, we proposed a simplified, time-saving and low-cost extraction method for isolating high quantities of high-quality RNA from several different kenaf tissues. RNA quality was measured for yield and purity, and the proposed protocol yielded high quantities of RNA (10.1-12.9 μg/g·FW). Spectrophotometric analysis showed that A260/280 ratios of RNA samples were in the range of 2.11 to 2.13, and A260/230 ratios were in the range of 2.04-2.24, indicating that the RNA samples were free of polyphenols, polysaccharides, and protein contaminants after isolation. The method of RNA extraction presented here was superior to the conventional CTAB method in terms of RNA isolation efficiency and was more sample-adaptable and cost-effective than commercial kits. Furthermore, to confirm downstream amenability, the high-quality RNA obtained from this method was successfully used for RT-PCR, real-time RT-PCR and Northern blot analysis. We provide an efficient and low-cost method for extracting high quantities of high-quality RNA from plants that are rich in polyphenols and polysaccharides, and this method was also validated for the isolation of high-quality RNA from other plants.


2017 ◽  
Vol 38 (4) ◽  
pp. 2201 ◽  
Author(s):  
Gabrielle Silveira de Campos ◽  
Ricardo Antônio Ayub ◽  
Rafael Mazer Etto ◽  
Carolina Weigert Galvão ◽  
Marília Aparecida Stroka ◽  
...  

Melon, a member of the family Cucurbitaceae, is the fourth most important fruit in the world market and, on a volume basis, is Brazil’s main fresh fruit export. Many molecular techniques used to understand the maturation of these fruits require high concentrations of highly purified RNA. However, melons are rich in polyphenolic compounds and polysaccharides, which interfere with RNA extraction. This study aimed to determine the most appropriate method for total RNA extraction from melon fruits. Six extraction buffers were tested: T1) guanidine thiocyanate/phenol/chloroform; T2) sodium azide/?-mercaptoethanol; T3) phenol/guanidine thiocyanate; T4) CTAB/PVP/?-mercaptoethanol; T5) SDS/sodium perchlorate/PVP/?-mercaptoethanol, and T6) sarkosyl/PVP/guanidine thiocyanate, using the AxyPrepTM Multisource Total RNA Miniprep Kit. The best method for extracting RNA from both mature and green fruit was based on the SDS/PVP/?-mercaptoethanol buffer, because it rapidly generated a high quality and quantity of material. In general, higher amounts of RNA were obtained from green than mature fruits, probably due to the lower concentration of polysaccharides and water. The purified material can be used as a template in molecular techniques, such as microarrays, RT-PCR, and in the construction of cDNA and RNA-seq data.


2019 ◽  
Vol 43 ◽  
Author(s):  
Rafael Novais de Miranda ◽  
Caroline Marcela da Silva ◽  
Antonio Carlos da Mota Porto ◽  
Welison Andrade Pereira

ABSTRACT The Straw Test is an assay developed to evaluate the resistance of common bean to white mold, in which the plant stems are inoculated and the symptoms of the disease are monitored. It is plausible to admit that investigating gene expression in pathogen-infected tissues may be strategically interesting. However, obtaining a quality RNA is a basic requirement for this purpose. Therefore, the objective of this study was to evaluate adjustments in protocols of commercial kits in the expectation of improving the quality of RNA obtained from bean stems. For this, plants of two lines were inoculated and the stems pathogen-infected were collected 72 hours after. For RNA extraction, two commercial reagents were used following the manufacturer’s recommendations and then following adaptations in these protocols. In particular, the proposed modifications relate to volumes of supernatant recovered in purification steps, additional step of chloroform purification and extended time for nucleic acids precipitation. The obtained RNA was analyzed by spectrophotometer, electrophoresis and bioanalyzer, then converted into cDNA and subsequently submitted to PCR. From the obtained data, it was observed that the adaptations made in the protocols contributed to better results and that, when the indicative values of RNA quality are guaranteed, the subsequent reactions are more pure, precise and representative.


2017 ◽  
Vol 42 (4) ◽  
Author(s):  
Synda Chenenaoui ◽  
Samia Daldoul ◽  
Ahmed Mliki

AbstractObjectives:Grapevine root system plays a great role in sensing and adapting to abiotic and biotic stresses. Identification of candidate genes involved in the tolerance to abiotic stress is becoming a crucial strategy to select and breed resilient genotypes. However, obtaining high quality RNA from grapevine roots under hydroponic culture is difficult. Hence, we have developed a new extraction procedure to improve RNA quality for root gene expression studies.Methods:Conventional RNA extraction methods using CTAB are not suitable for gene expression studies and need to be improved. Here we report the application of a CTAB- based method for RNA extraction using an additional clean-up purification step.Results:The RIN value of the resulting RNA indicated that our procedure allowed the purification of high RNA quality and quantity. Hence, the clean-up purification step efficiently eliminated contaminants which inhibit downstream applications. Derived RNA was successfully used for differential gene expression analysis in salt stressed grapevine by Northern Blot hybridizations.Conclusion:In this study, we developed an efficient RNA isolation protocol from hydroponic cultivated grapevine roots which yielded RNA suitable for gene expression studies. This will open large perspectives in grapevine functional genomics with the identification of pertinent genes of agronomic interest.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260002
Author(s):  
María José Cárdenas Espinosa ◽  
Tabea Schmidgall ◽  
Georg Wagner ◽  
Uwe Kappelmeyer ◽  
Stephan Schreiber ◽  
...  

Bacterial degradation of xenobiotic compounds is an intense field of research already for decades. Lately, this research is complemented by downstream applications including Next Generation Sequencing (NGS), RT-PCR, qPCR, and RNA-seq. For most of these molecular applications, high-quality RNA is a fundamental necessity. However, during the degradation of aromatic substrates, phenolic or polyphenolic compounds such as polycatechols are formed and interact irreversibly with nucleic acids, making RNA extraction from these sources a major challenge. Therefore, we established a method for total RNA extraction from the aromatic degrading Pseudomonas capeferrum TDA1 based on RNAzol® RT, glycogen and a final cleaning step. It yields a high-quality RNA from cells grown on TDA1 and on phenol compared to standard assays conducted in the study. To our knowledge, this is the first report tackling the problem of polyphenolic compound interference with total RNA isolation in bacteria. It might be considered as a guideline to improve total RNA extraction from other bacterial species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Singh ◽  
A. K. Yadav ◽  
A. Pakhare ◽  
P. Kulkarni ◽  
L. Lokhande ◽  
...  

AbstractTo meet the unprecedented requirement of diagnostic testing for SARS-CoV-2, a large number of diagnostic kits were authorized by concerned authorities for diagnostic use within a short period of time during the initial phases of the ongoing pandemic. We undertook this study to evaluate the inter-test agreement and other key operational features of 5 such commercial kits that have been extensively used in India for routine diagnostic testing for COVID-19. The five commercial kits were evaluated, using a panel of positive and negative respiratory samples, considering the kit provided by National Institute of Virology, Indian Council of Medical Research (2019-nCoV Kit) as the reference. The positive panel comprised of individuals who fulfilled the 3 criteria of being clinically symptomatic, having history of contact with diagnosed cases and testing positive in the reference kit. The negative panel included both healthy and disease controls, the latter being drawn from individuals diagnosed with other respiratory viral infections. The same protocol of sample collection, same RNA extraction kit and same RT-PCR instrument were used for all the kits. Clinical samples were collected from a panel of 92 cases and 60 control patients, who fulfilled our inclusion criteria. The control group included equal number of healthy individuals and patients infected with other respiratory viruses (n = 30, in each group). We observed varying sensitivity and specificity among the evaluated kits, with LabGun COVID-19 RT-PCR kit showing the highest sensitivity and specificity (94% and 100% respectively), followed by TaqPath COVID-19 Combo and Allplex 2019-nCoV assays. The extent of inter-test agreement was not associated with viral loads of the samples. Poor correlation was observed between Ct values of the same genes amplified using different kits. Our findings reveal the presence of wide heterogeneity and sub-optimal inter-test agreement in the diagnostic performance of the evaluated kits and hint at the need of adopting stringent standards for fulfilling the quality assurance requirements of the COVID-19 diagnostic process.


Author(s):  
Ahmad Asnawi MUS ◽  
Jualang Azlan GANSAU ◽  
Nor Azizun RUSDI

Phalaenopsis bellina is an attractive orchid due to its unique appearance and distinctive floral fragrance. Many past studies on this plant focused on the plant at the molecular level; however, this requires sufficient quantities of high-quality P. bellina RNA. RNA is more delicate to manipulate than DNA due to its structural instability and its vulnerability to various secondary metabolites, such as polyphenols and polysaccharides. Therefore, in this study, 4 RNA isolation methods, a modified phenol-chloroform method and 3 commercial kits (Vivantis, Novogene, and Analytik Jena) were used on the leaves and flowers of P. bellina for comparison. The yield and purity of the total RNA were determined using spectrophotometry. The results showed that the total RNA isolated using the modified phenol-chloroform method had the highest yield (1223.75±68.51 ng/µL) and purity compared to the 3 commercial kits, with an OD260/280 value of 2.07 and an OD260/230 value of 2.26, respectively. In particular, the isolated RNA did not show any detectable genomic DNA contamination or other impurities. The RNA isolated using the phenol-chloroform method was also evaluated by electrophoresis, reverse transcription, and PCR. The results indicated that the phenol-chloroform method appears to be superior for total RNA extraction. Thus, this developed method is proven to be suitable for the RNA extraction of plants rich in polysaccharides and polyphenols and is amenable for future molecular studies on P. bellina.


2005 ◽  
Vol 71 (7) ◽  
pp. 3734-3740 ◽  
Author(s):  
Saskia A. Rutjes ◽  
Ronald Italiaander ◽  
Harold H. J. L. van den Berg ◽  
Willemijn J. Lodder ◽  
Ana Maria de Roda Husman

ABSTRACT Concentration of water samples is a prerequisite for the detection of the low virus levels that are present in water and may present a public health hazard. The aim of this study was to develop a rapid, standardized molecular method for the detection of enteroviruses in large-volume surface water samples, using a concentration method suitable for the detection of infectious viruses as well as virus RNA. Concentration of water was achieved by a conventional filter adsorption-elution method and ultrafiltration, resulting in a 10,000-fold concentration of the sample. Isolation of virus RNA by a silica-based RNA extraction method was compared with the nonmagnetic and magnetic NucliSens RNA isolation methods. By using the silica-based RNA extraction method in two out of five samples, enterovirus RNA was detected, whereas four out of five samples were positive following RNA isolation with magnetic silica beads. Moreover, estimated RNA levels increased at least 100 to 500 times. Furthermore, we compared enterovirus detection by an in-house reverse transcription (RT)-PCR with a novel commercially available real-time nucleic acid sequence-based amplification (NASBA) assay. We found that the rapid real-time NASBA assay was slightly less sensitive than our in-house RT-PCR. The advantages, however, of a commercial real-time NASBA assay, like the presence of an internal control RNA, standardization, and enormous decrease in turnaround time, makes it an attractive alternative to RT-PCR.


2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Vasila Packeer Mohamed ◽  
Yumi Z. H-Y. Hashim ◽  
A. Amid ◽  
M. Mel

ABSTRACT: Various methods have been described to extract RNA from adherent mammalian cells. RNA isolation in conjunction with reverse transcription polymerase chain reaction (RT-PCR) is a valuable tool used to study gene expression profiling. This approach is now being used in mammalian cell bioprocessing to help understand and improve the system. The objective of this study was to compare and determine the most suitable RNA extraction method for CHO-K1 cells in a setting where a relatively large amount of samples was involved. Total RNA was extracted using Total RNA purification kit (without DNase treatment; Norgen, Canada) and RNeasy mini kit (with DNase treatment; Qiagen, USA) respectively. The extracted RNA was then reverse transcribed, and the cDNA was subjected to PCR-amplifying 18S. Yield from RNeasy kit was significantly higher (0.316 ± 0.033 µg/µl; p=0.004) than Total RNA purification kit (0.177 ± 0.0243 µg/µl). However, RNA purity for both methods was close to 2.0 and there was no significant difference between the methods. Total RNA purification kit is less expensive than RNeasy kit. Since there is no DNase treatment step in the former, extraction time for RNA is shorter. When the extracted RNA was subjected to RT-PCR, both methods were able to show detection of 18S at 219 bp.   Therefore, this study demonstrates that both protocols are suitable for RNA extraction for CHO-K1 cells. RNeasy mini kit (Qiagen) is recommended if higher yields is the primary concern and Total RNA Purification kit (Norgen) is recommended if time and cost are concerned. ABSTRAK: Pelbagai kaedah telah digunakan untuk mengekstrak RNA daripada sel mamalia lekat.  Pemencilan RNA dengan menggunakan reaksi rantai polimerase transkripsi berbalik (RT-PCR) merupakan kaedah penting yang digunakan dalam mengkaji pernyataan gen berprofil.  Pendekatan ini kini digunakan dalam pemprosesan bio sel mamalia untuk memahami dan menambah baik sistem.  Tujuan kajian dijalankan adalah untuk menentukan dan membandingkan kaedah ekstraksi RNA yang paling sesuai bagi sel CHO-K1 di persekitaran di mana kadar sampel yang agak besar terlibat. Jumlah RNA  diekstrak menggunakan kit penulenan Jumlah RNA (tanpa rawatan DNase; Norgen, Canada) dan kit mini RNeasy (dengan rawatan DNase; Qiagen, USA).  RNA yang diekstrak kemudiannya diterbalikkan transkripsi, dan cDNA menjalani penguat PCR 18S. Hasil daripada kit RNeasy adalah lebih tinggi (0.316 ± 0.033 µg/µl; p=0.004) berbanding dengan kit penulenan Jumlah RNA (0.177 ± 0.0243 µg/µl). Walaupun begitu, kaedah penulenan RNA untuk kedua-duanya hampir 2.0 dan tidak terdapat perbezaan yang ketara antara keduanya. Kit penulenan Jumlah RNA adalah lebih murah berbanding dengan kit RNeasy. Memandangkan tidak ada langkah rawatan DNase dengan penggunaan kit Jumlah RNA, tempoh ekstrak RNA nya lebih pendek. Apabila RNA yang telah diekstrak menjalani RT-PCR, kedua-dua kaedah berjaya mengesan 18S pada 219 bp.   Kesimpulannya, kajian ini menunjukkan kedua-dua kaedah sesuai untuk mengekstrak RNA bagi sel CHO-K1. Kit mini RNeasy (Qiagen) lebih sesuai jika hasil yang tinggi diinginkan dan kit penulenan Jumlah RNA (Norgen) pula ideal, jika kos dan masa berkepentingan.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255245
Author(s):  
Paola de Avelar Carpinetti ◽  
Vinicius Sartori Fioresi ◽  
Thais Ignez da Cruz ◽  
Francine Alves Nogueira de Almeida ◽  
Drielli Canal ◽  
...  

Acquiring high-quality RNA in sufficient amounts is crucial in plant molecular biology and genetic studies. Several methods for RNA extraction from plants are available in the literature, mainly due to the great biochemical diversity present in each species and tissue, which can complicate or prevent the extraction. Psidium guajava (Myrtaceae family) is a perennial fruit tree of medicinal and economic value; nevertheless, only a few molecular studies are available for the species. One reason is the difficulty in obtaining RNA due to the content of the samples, which are rich in polyphenols, polysaccharides, and secondary metabolites. Furthermore, there are few studies available for the isolation of RNA from guava or Psidium samples, which hampers advances in the study of the genus. Here, quality and yields of RNA isolates were compared using six extraction protocols: two protocols based on the application of cetyltrimethylammonium bromide (CTAB) lysis buffer, one protocol which uses the TRIzol reagent, one which applies guanidine thiocyanate lysis buffer followed by organic phase extraction, and two commercial kits (PureLink RNA Mini Kit and RNeasy Plant Mini Kit). The CTAB-based method provided the highest RNA yields and quality for five different tissues (flower bud, immature leaf, young leaf, mature leaf, and root), genotypes, and stress conditions. For the most efficient protocol, the average yield of RNA from guava leaves was 203.06 μg/g of tissue, and the A260/A280 and A260/A230 ratios were 2.1 and 2.2, respectively. RT-qPCR analysis demonstrated that the purity of the samples was sufficient for molecular biology experiments. CTAB-based methods for RNA isolation were found to be the most efficient, providing the highest RNA yields and quality for tissues from P. guajava. Additionally, they were compatible for downstream RNA-based applications, besides being simple and cost-effective.


Sign in / Sign up

Export Citation Format

Share Document