scholarly journals Real time controlled sustainable urban drainage systems in dense urban areas

2019 ◽  
Vol 69 (3) ◽  
pp. 238-247 ◽  
Author(s):  
Nils Kändler ◽  
Ivar Annus ◽  
Anatoli Vassiljev ◽  
Raido Puust

Abstract Stormwater runoff from urban catchments is affected by the changing climate and rapid urban development. Intensity of rainstorms is expected to increase in Northern Europe, and sealing off surfaces reduces natural stormwater management. Both trends increase stormwater peak runoff volume that urban stormwater systems (UDS) have to tackle. Pipeline systems have typically limited capacity, therefore measures must be foreseen to reduce runoff from new developed areas to existing UDS in order to avoid surcharge. There are several solutions available to tackle this challenge, e.g. low impact development (LID), best management practices (BMP) or stormwater real time control measures (RTC). In our study, a new concept of a smart in-line storage system is developed and evaluated on the background of traditional in-line and off-line detention solutions. The system is operated by real time controlled actuators with an ability to predict rainfall dynamics. This solution does not need an advanced and expensive centralised control system; it is easy to implement and install. The concept has been successfully tested in a 12.5 ha urban development area in Tallinn, the Estonian capital. Our analysis results show a significant potential and economic feasibility in the reduction of peak flow from dense urban areas with limited free construction space.

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 631 ◽  
Author(s):  
Nils Kändler ◽  
Ivar Annus ◽  
Anatoli Vassiljev ◽  
Raido Puust ◽  
Katrin Kaur

Urban stormwater drainage systems (UDS) are severely affected by the changing climate bringing along inter alia more intense rainfall events. The conduits, usually having limited capacity, are unable to cope with these excessive flowrates. Therefore, measures must be undertaken to temporarily accumulate extra flowrates in order to avoid the flooding. There are several options available to tackle this challenge, e.g., low impact development (LID) solutions, best management practices (BMP), stormwater real-time control measures (RTC). In this study the efficiency of in-line and off-line detention tanks are analyzed. Moreover, new concept of smart in-line storage system is created and evaluated. This solution shows significant reduction in peak flow, economic benefit and is particularly suitable for the districts with limited construction space. The concept has been successfully tested in 10 ha dense urban development area in Estonian capital Tallinn.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1547
Author(s):  
Jian Sha ◽  
Xue Li ◽  
Man Zhang ◽  
Zhong-Liang Wang

Accurate real-time water quality prediction is of great significance for local environmental managers to deal with upcoming events and emergencies to develop best management practices. In this study, the performances in real-time water quality forecasting based on different deep learning (DL) models with different input data pre-processing methods were compared. There were three popular DL models concerned, including the convolutional neural network (CNN), long short-term memory neural network (LSTM), and hybrid CNN–LSTM. Two types of input data were applied, including the original one-dimensional time series and the two-dimensional grey image based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) decomposition. Each type of input data was used in each DL model to forecast the real-time monitoring water quality parameters of dissolved oxygen (DO) and total nitrogen (TN). The results showed that (1) the performances of CNN–LSTM were superior to the standalone model CNN and LSTM; (2) the models used CEEMDAN-based input data performed much better than the models used the original input data, while the improvements for non-periodic parameter TN were much greater than that for periodic parameter DO; and (3) the model accuracies gradually decreased with the increase of prediction steps, while the original input data decayed faster than the CEEMDAN-based input data and the non-periodic parameter TN decayed faster than the periodic parameter DO. Overall, the input data preprocessed by the CEEMDAN method could effectively improve the forecasting performances of deep learning models, and this improvement was especially significant for non-periodic parameters of TN.


Author(s):  
Félicien Majoro ◽  
Umaru Garba Wali ◽  
Omar Munyaneza ◽  
François-Xavier Naramabuye ◽  
Concilie Mukamwambali

Soil erosion is an environmental concern that affects agriculture, wildlife and water bodies. Soil erosion can be avoided by maintaining a protective cover on the soil to create a barrier to the erosive agent or by modifying the landscape to control runoff amounts and rates. This research is focused on Sebeya catchment located in the Western Province of Rwanda. Sebeya catchment is one of the most affected areas by soil erosion hazards causing loss of crops due to the destruction of agricultural plots or riverbanks, river sedimentation and damages to the existing water treatment and hydropower plants in the downstream part of the river. The aims of this research were to assess the performance of erosion remediation measures and to propose the Best Management Practices (BMPs) for erosion control in Sebeya catchment. Using literature review, site visits, questionnaire and interviews, various erosion control measures were analyzed in terms of performance and suitability. Land slope and soil depth maps were generated using ArcGIS software. The interview results indicated that among the 22 existing soil erosion control measures, about 4.57% of farmers confirmed their existence while 95.43% expressed the need of their implementation in Sebeya catchment. Furthermore, economic constraints were found to be the main limitative factors against the implementation of soil erosion control measures in Sebeya catchment. Also, the majority of farmers suggest trainings and mobilization of a specialized technical team to assist them in implementing soil conservation measures and to generalize the application of fertilizers in the whole catchment. Finally, soil erosion control measures including agro-forestry, terraces, mulching, tree planting, contour bunds, vegetative measures for slopes and buffer zones, check dams, riverbanks stabilization were proposed and recommended to be implemented in Sebeya catchment. Keywords: Erosion control measures, Sebeya catchment, Rwanda


2018 ◽  
Vol 28 (4) ◽  
pp. 436-444 ◽  
Author(s):  
Raul I. Cabrera ◽  
James E. Altland ◽  
Genhua Niu

Scarcity and competition for good quality and potable water resources are limiting their use for urban landscape irrigation, with several nontraditional sources being potentially available for these activities. Some of these alternative sources include rainwater, stormwater, brackish aquifer water, municipal reclaimed water (MRW), air-conditioning (A/C) condensates, and residential graywater. Knowledge on their inherent chemical profile and properties, and associated regional and temporal variability, is needed to assess their irrigation quality and potential short- and long-term effects on landscape plants and soils and to implement best management practices that successfully deal with their quality issues. The primary challenges with the use of these sources are largely associated with high concentrations of total salts and undesirable specific ions [sodium (Na), chloride (Cl), boron (B), and bicarbonate (HCO3−) alkalinity]. Although the impact of these alternative water sources has been largely devoted to human health, plant growth and aesthetic quality, and soil physicochemical properties, there is emergent interest in evaluating their effects on soil biological properties and in natural ecosystems neighboring the urban areas where they are applied.


2021 ◽  
Author(s):  
Stephanie Anee Kalt

Recently many Canadian municipalities have begun to experiment with urban naturalization programs. Consequently, many urban environments are now inhabited by a much larger wildlife population than they were several decades ago. The more species present in the city, the greater the potential for human-wildlife interaction and/or conflict. Current municipal capacity for human-wildlife conflict management is generally insufficient to deal with growing problems. New solutions for human-wildlife conflict are needed. Using selected municipalities in southern Ontario as an example, this thesis research explores the development and application of principles for wildlife-human conflict management in urban areas. A literature review, media analysis and interviews with key municipal stakeholders were used to identify best management practices. Recommendations for the development of integrated nuisance management (INM) systems are proposed based on study findings.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2961
Author(s):  
Yang Ho Song ◽  
Jung Ho Lee ◽  
Eui Hoon Lee

A defining characteristic of the urbanization is the transformation of existing pervious areas into impervious areas during development. This leads to numerous hydrologic and environmental problems such as an increase in surface runoff due to excess rainfall, flooding, the deterioration of water quality, and an increase in nonpoint source pollution. Several studies propose supplementary measures on environmental change problems in development areas using the low impact development technique. This study investigated the reduction of nonpoint source pollutant loads and flooding in catchments through urban catchment rainfall–runoff management. For the quantitative assessment of flood disasters and water pollution problems, we propose a reliability evaluation technique. This technique refers to a series of analysis methods that determine the disaster prevention performance of the existing systems. As the two factors involve physical quantities of different dimensions, a reliability evaluation technique was developed using the distance measure method. Using the storm water management model, multiple scenarios based on synthetic rainfall in the catchment of the Daerim 2 rainwater pumping station in Seoul, South Korea, were examined. Our results indicate the need for efficient management of natural disaster risks that may occur in urban catchments. Moreover, this study can be used as a primary reference for setting a significant reduction target and facilitating accurate decision making concerning urban drainage system management.


2002 ◽  
Vol 45 (3) ◽  
pp. 229-237 ◽  
Author(s):  
T. Frehmann ◽  
A. Niemann ◽  
P. Ustohal ◽  
W.F. Geiger

Four individual mathematical submodels simulating different subsystems of urban drainage were intercoupled to an integral model. The submodels (for surface runoff, flow in sewer system, wastewater treatment plant and receiving water) were calibrated on the basis of field data measured in an existing urban catchment investigation. Three different strategies for controlling the discharge in the sewer network were defined and implemented in the integral model. The impact of these control measures was quantified by representative immission state-parameters of the receiving water. The results reveal that the effect of a control measure may be ambivalent, depending on the referred component of a complex drainage system. Furthermore, it is demonstrated that the drainage system in the catchment investigation can be considerably optimised towards environmental protection and operation efficiency if an appropriate real time control on the integral scale is applied.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
J. Maršálek ◽  
D. Sztruhár

Recent developments in urban storm drainage are reviewed starting with rainfall/runoff processes, followed by discussions of combined sewage, drainage impacts on receiving waters, impact mitigation, hydroinformatics, regulatory programs and conclusions. The most promising trends in this field include improvements in spatial definition of rainfall data, runoff modelling with a limited number of model parameters and recognition of modelling uncertainties, analytical statistical modelling of runoff quality, advances in the understanding and modelling of sewer sediment transport, the use of biomonitoring and modelling in assessing drainage impacts on receiving waters, further refinement of best management practices for stormwater management, development of new processes for treatment of stormwater, experience with vortex combined sewer overflow structures and their applications in combination with other treatment devices, real time control of sewer system operation, advances in hydroinformatics leading to improvements in the integrated management and modelling of drainage systems, interfacing of drainage models with geographic information systems, and improved regulation of drainage effluents.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1415 ◽  
Author(s):  
Abdul Razaq Rezaei ◽  
Zubaidah Ismail ◽  
Mohammad Hossein Niksokhan ◽  
Muhammad Amin Dayarian ◽  
Abu Hanipah Ramli ◽  
...  

The vast development of urban areas has resulted in the increase of stormwater peak runoff and volume. Water quality has also been adversely affected. The best management practices (BMPs) and low impact development (LID) techniques could be applied to urban areas to mitigate these effects. A quantity–quality model was developed to simulate LID practices at the catchment scale using the US Environmental Protection Agency Storm Water Management Model (US EPA SWMM). The purpose of the study was to investigate the impacts of LID techniques on hydrology and water quality. The study was performed in BUNUS catchment in Kuala Lumpur, Malaysia. This study applied vegetated swale and rain garden to assess the model performance at a catchment scale using real field data. The selected LIDs occupied 7% of each subcatchment (of which 40% was swale and 30% was rain garden). The LID removal efficiency was up to 40% and 62% for TN and TSS, respectively. The peak runoff reduction was up to 27% for the rainfall of up to 70 mm, and up to 19% for the rainfall of between 70 and 90 mm, respectively. For the longer storm events of higher than 90 mm the results were not as satisfactory as expected. The model was more effective in peak runoff reduction during the shorter rainfall events. As for the water quality, it was satisfactory in all selected rainfall scenarios.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 235 ◽  
Author(s):  
Zuoda Qi ◽  
Gelin Kang ◽  
Xiaojin Wu ◽  
Yuting Sun ◽  
Yuqiu Wang

Best management practices (BMPs) are an effective way to control water pollution. However, identification of the optimal distribution and cost-effect of BMPs provides a great challenge for watershed policy makers. In this paper, a semi-distributed, low-data, and robust watershed model, the Revised Generalized Watershed Loading Function (RGWLF), is improved by adding the pollutant attenuation process in the river channel and a bank filter strips reduction function. Three types of pollution control measures—point source wastewater treatment, bank filter strips, and converting farmland to forest—are considered, and the cost of each measure is determined. Furthermore, the RGWLF watershed model is coupled with a widely recognized multi-objective optimization algorithm, the non-dominated sorting genetic algorithm II (NSGAII), the combination of which is applied in the Luanhe watershed to search for spatial BMPs for dissolved nitrogen (DisN). Fifty scenarios were finally selected from numerous possibilities and the results indicate that, at a minimum cost of 9.09 × 107 yuan, the DisN load is 3.1 × 107 kg and, at a maximum cost of 1.77 × 108 yuan, the total dissolved nitrogen load is 1.31 × 107 kg; with the no-measures scenario, the DisN load is 4.05 × 107 kg. This BMP optimization model system could assist decision-makers in determining a scientifically comprehensive plan to realize cost-effective goals for the watershed.


Sign in / Sign up

Export Citation Format

Share Document