Urban Drainage: Review of Contemporary Approaches

1994 ◽  
Vol 29 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
J. Maršálek ◽  
D. Sztruhár

Recent developments in urban storm drainage are reviewed starting with rainfall/runoff processes, followed by discussions of combined sewage, drainage impacts on receiving waters, impact mitigation, hydroinformatics, regulatory programs and conclusions. The most promising trends in this field include improvements in spatial definition of rainfall data, runoff modelling with a limited number of model parameters and recognition of modelling uncertainties, analytical statistical modelling of runoff quality, advances in the understanding and modelling of sewer sediment transport, the use of biomonitoring and modelling in assessing drainage impacts on receiving waters, further refinement of best management practices for stormwater management, development of new processes for treatment of stormwater, experience with vortex combined sewer overflow structures and their applications in combination with other treatment devices, real time control of sewer system operation, advances in hydroinformatics leading to improvements in the integrated management and modelling of drainage systems, interfacing of drainage models with geographic information systems, and improved regulation of drainage effluents.

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 631 ◽  
Author(s):  
Nils Kändler ◽  
Ivar Annus ◽  
Anatoli Vassiljev ◽  
Raido Puust ◽  
Katrin Kaur

Urban stormwater drainage systems (UDS) are severely affected by the changing climate bringing along inter alia more intense rainfall events. The conduits, usually having limited capacity, are unable to cope with these excessive flowrates. Therefore, measures must be undertaken to temporarily accumulate extra flowrates in order to avoid the flooding. There are several options available to tackle this challenge, e.g., low impact development (LID) solutions, best management practices (BMP), stormwater real-time control measures (RTC). In this study the efficiency of in-line and off-line detention tanks are analyzed. Moreover, new concept of smart in-line storage system is created and evaluated. This solution shows significant reduction in peak flow, economic benefit and is particularly suitable for the districts with limited construction space. The concept has been successfully tested in 10 ha dense urban development area in Estonian capital Tallinn.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 331-336 ◽  
Author(s):  
Gabriela Weinreich ◽  
Wolfgang Schilling ◽  
Ane Birkely ◽  
Tallak Moland

This paper presents results from an application of a newly developed simulation tool for pollution based real time control (PBRTC) of urban drainage systems. The Oslo interceptor tunnel is used as a case study. The paper focuses on the reduction of total phosphorus Ptot and ammonia-nitrogen NH4-N overflow loads into the receiving waters by means of optimized operation of the tunnel system. With PBRTC the total reduction of the Ptot load is 48% and of the NH4-N load 51%. Compared to the volume based RTC scenario the reductions are 11% and 15%, respectively. These further reductions could be achieved with a relatively simple extension of the operation strategy.


2019 ◽  
Vol 69 (3) ◽  
pp. 238-247 ◽  
Author(s):  
Nils Kändler ◽  
Ivar Annus ◽  
Anatoli Vassiljev ◽  
Raido Puust

Abstract Stormwater runoff from urban catchments is affected by the changing climate and rapid urban development. Intensity of rainstorms is expected to increase in Northern Europe, and sealing off surfaces reduces natural stormwater management. Both trends increase stormwater peak runoff volume that urban stormwater systems (UDS) have to tackle. Pipeline systems have typically limited capacity, therefore measures must be foreseen to reduce runoff from new developed areas to existing UDS in order to avoid surcharge. There are several solutions available to tackle this challenge, e.g. low impact development (LID), best management practices (BMP) or stormwater real time control measures (RTC). In our study, a new concept of a smart in-line storage system is developed and evaluated on the background of traditional in-line and off-line detention solutions. The system is operated by real time controlled actuators with an ability to predict rainfall dynamics. This solution does not need an advanced and expensive centralised control system; it is easy to implement and install. The concept has been successfully tested in a 12.5 ha urban development area in Tallinn, the Estonian capital. Our analysis results show a significant potential and economic feasibility in the reduction of peak flow from dense urban areas with limited free construction space.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1034 ◽  
Author(s):  
Congcong Sun ◽  
Jan Lorenz Svensen ◽  
Morten Borup ◽  
Vicenç Puig ◽  
Gabriela Cembrano ◽  
...  

The advanced control of urban drainage systems (UDS) has great potential in reducing pollution to the receiving waters by optimizing the operations of UDS infrastructural elements. Existing controls vary in complexity, including local and global strategies, Real-Time Control (RTC) and Model Predictive Control (MPC). Their results are, however, site-specific, hindering a direct comparison of their performance. Therefore, the working group ‘Integral Real-Time Control’ of the German Water Association (DWA) developed the Astlingen benchmark network, which has been implemented in conceptual hydrological models and applied to compare RTC strategies. However, the level of detail of such implementations is insufficient for testing more complex MPC strategies. In order to provide a benchmark for MPC, this paper presents: (1) The implementation of the conceptual Astlingen system in an open-source hydrodynamic model (EPA-SWMM), and (2) the application of an MPC strategy to the developed SWMM model. The MPC strategy was tested against traditional and well-established local and global RTC approaches, demonstrating how the proposed benchmark system can be used to test and compare complex control strategies.


1998 ◽  
Vol 25 (5) ◽  
pp. 844-853
Author(s):  
Andrée Bilodeau ◽  
Alain Mailhot ◽  
Jean-Pierre Villeneuve

This paper presents results of a study the goal of which is to evaluate the impact of rainfall forecast errors on real time control (RTC) of combined sewers in the Québec Urban Community (Q.U.C.). Firstly, we analyzed the impact of different levels of uncertainty on the probability to generate overloads in combined sewers and on the optimal overflow volume. The effects of the spatial distribution of errors on overloads and on overflow volumes have also been studied. Secondly, we modified the system management decision criteria in order to reduce the overload probability and to avoid possible backflows. This modification consisted of reducing the maximum allowable flow in the pipes of the sewer network. The results obtained showed that despite the negative impacts of forecast errors on overloads, this simple method preserves the efficiency of predictive integrated management. This ensures a safety margin on the possible backflows due to meteorological forecast errors.Key words: overflow, real time, control, combined sewers, forecast, errors, rain, overloads, backflows.


2007 ◽  
Vol 96 (2) ◽  
pp. 257-266 ◽  
Author(s):  
D.J. Parsons ◽  
D.M. Green ◽  
C.P. Schofield ◽  
C.T. Whittemore

Author(s):  
Thewodros K. Geberemariam

Infiltration based stormwater best management practices bring considerable economic, social and ecological benefits. Controlling stormwater quantity and quality are primarily important to prevent urban flooding and minimizing loads of pollutants to the receiving waters. However, there have been growing concerns about how the traditional design approach contributes to the failure of infiltration based BMP’s that have caused flooding, ponding, prolonged movement of surface water, and frequent clogging, etc. Many of these problems were due to the fact that the current design approaches of stormwater BMP’s only focus on surface hydrology and give little or no attention to the underline subsoil permeability rate and other constraints during the design and sizing process. As a result, we are exhibiting many newly constructed infiltration based BMP’s are failing to function well. This paper presents and demonstrates a new paradigm shift in designing infiltration-based stormwater BMP’s by combining subsurface hydrology and undelaying native soil constraints to establish acceptable criteria for sizing infiltration based BMPs.


2002 ◽  
Vol 45 (3) ◽  
pp. 219-228 ◽  
Author(s):  
L.P. Risholt ◽  
W. Schilling ◽  
V. Erbe ◽  
J. Alex

Wastewater systems are traditionally built as static systems to handle a design load. The real load varies, though, and hardly ever equals the design load. This implies that wastewater systems hardly ever operate in an optimum way, especially during wet weather. Real time control (RTC) of regulators can improve the operation by better fit of the system to the actual state and load. RTC based on pollutant concentrations together with hydraulic conditions (pollution based real time control, PBRTC) is investigated in this paper to assess the potential pollutant load reduction on receiving waters at wet weather without expansion of transport or storage capacity. Both CSOs and WWTP effluents contribute to the pollutant discharges to receiving waters and both are considered. Three cases are studied to assess the potential benefit of PBRTC. Giving priority to the most polluted wastewater for treatment and storage in branched interceptor systems can reduce CSO discharge loads by more than 20%. Biological WWTPs and especially activated sludge plants are more complex and less stable than chemical precipitation plants during and after high pollutant and hydraulic load. Biological plants can hence profit more from PBRTC than chemical precipitation plants. Receiving waters that are sensitive to acute effects caused by intermittent discharges can benefit more from PBRTC than receiving waters with problems connected to long-term accumulation of pollution.


2002 ◽  
Vol 45 (3) ◽  
pp. 1-10 ◽  
Author(s):  
P. Harremös

This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes aspects of the papers presented at the INTERURBA-II conference in 2001 and the discussions during the conference. Tools for integrated analysis have been developed, but there is less implementation than could be expected. That is due to lack of adequate knowledge about important mechanisms, coupled with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important measures are local infiltration, source control, storage basins, local treatment and real time control. New paradigms have been introduced: risk of pollution due to system failure, technology for water reuse, sustainability, new architecture and greener up-stream solutions as opposed to down-stream concrete solutions. The challenge is to combine the inherited approaches with the new approaches by flexibility and adaptability.


2007 ◽  
Vol 55 (3) ◽  
pp. 1-7 ◽  
Author(s):  
B.J. D'Arcy ◽  
T. Rosenqvist ◽  
G. Mitchell ◽  
R. Kellagher ◽  
S. Billett

Urban sources account for significant quantities of important diffuse pollutants, and urban watercourses are typically badly polluted. As well as toxic metals, hydrocarbons including PAHs, and suspended matter, priority urban pollutants include faecal pathogens and nutrients. Can urban watercourses be restored by sufficient reductions in pollution loads? Case studies in the UK and Sweden provide insights and some grounds for optimism. A major trans-Atlantic review of the performance of best management practices (BMPs) is informing BMP planning. New approaches such as the maximisation of self-purification capacity in the receiving waters may also need to be developed, alongside BMPs at source. Other initiatives in Europe, USA and China, including collaborative projects, are trying to address the intractable issues such as persistent pollutants from transport and urban infrastructure. The challenge is daunting, but there are clear ways forward and future research needs are evident.


Sign in / Sign up

Export Citation Format

Share Document