scholarly journals Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK

2009 ◽  
Vol 40 (2-3) ◽  
pp. 138-152 ◽  
Author(s):  
B. A. Cox ◽  
P. G. Whitehead

A water quality model is used to assess the impact of possible climate change on dissolved oxygen (DO) in the Thames. The Thames catchment is densely populated and, typically, many pressures are anthropogenic. However, that same population also relies on the river for potable water supply and as a disposal route for treated wastewater. Thus, future water quality will be highly dependent on future activity. Dynamic and stochastic modelling has been used to assess the likely impacts on DO dynamics along the river system and the probability distributions associated with future variability. The modelling predictions indicate that warmer river temperatures and drought act to reduce dissolved oxygen concentrations in lowland river systems.

2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2019 ◽  
Vol 20 (6) ◽  
pp. 1197-1211 ◽  
Author(s):  
Rakesh K. Gelda ◽  
Rajith Mukundan ◽  
Emmet M. Owens ◽  
John T. Abatzoglou

Abstract Climate model output is often downscaled to grids of moderately high spatial resolution (~4–6-km grid cells). Such projections have been used in numerous hydrological impact assessment studies at watershed scales. However, relatively few studies have been conducted to assess the impact of climate change on the hydrodynamics and water quality in lakes and reservoirs. A potential barrier to such assessments is the need for meteorological variables at subdaily time scales that are downscaled to in situ observations to which lake and reservoir water quality models have been calibrated and validated. In this study, we describe a generalizable procedure that utilizes gridded downscaled data; applies a secondary bias-correction procedure using equidistance quantile mapping to map projections to station-based observations; and implements temporal disaggregation models to generate point-scale hourly air and dewpoint temperature, wind speed, and solar radiation for use in water quality models. The proposed approach is demonstrated for six locations within New York State: four within watersheds of the New York City water supply system and two at nearby National Weather Service stations. Disaggregation models developed using observations reproduced hourly data well at all locations, with Nash–Sutcliffe efficiency greater than 0.9 for air temperature and dewpoint, 0.4–0.6 for wind speed, and 0.7–0.9 for solar radiation.


2017 ◽  
Author(s):  
Isaac D. Irby ◽  
Marjorie A. M. Friedrichs ◽  
Fei Da ◽  
Kyle E. Hinson

Abstract. The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic- biogeochemical modeling system along with projected changes in temperature, freshwater flow, and sea level rise for a 2050 scenario to explore the impact climate change may have on future Chesapeake Bay dissolved oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming Bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase the volume of the Bay, pushing coastal saline water further into the Bay. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.


Author(s):  
Mohammad Nazari-Sharabian ◽  
Moses Karakouzian ◽  
Sajjad Ahmad

The Storm Water Management Model (SWMM) was used to evaluate the impact of urbanization, climate change, and implementation of Low Impact Developments (LIDs) at the Mahabad Dam watershed, Iran. Several scenarios of urbanization, with and without climate change impacts, in different locations were defined, including near outlet, middle, far end, and whole watershed. Climate change was considered to change the intensity of rainfall and increase evaporation. Vegetative swales were implemented as LIDs to evaluate their applicability to reduce pollutant loads. Digital Elevation Model (DEM) of the area was input into ArcGIS, and the watershed was delineated using the ArcSWAT extension to identify topographic features. Water quality properties were defined in the software, and each scenario was run for a twelve-hour simulation. The results indicated that urbanization affects the imperviousness of sub-catchments, and location of urbanization affects the amount and timing of runoff and pollutant yields. Fifty-percent urbanization near the watershed outlet resulted in 23.1% and 27.4% increases in runoff and pollutant loads, respectively. Fifty-percent urbanization in the middle resulted in 28.8% and 35.4% increases in runoff and pollutant loads; and, at the far end, 23.1% and 3.9% increases in runoff and pollutant loads were the result; Fifty-percent urbanizing the whole watershed gave 58.6% and 66.3% increases in runoff and pollutant loads, respectively; Under climate change scenarios (higher intensity, shorter duration rainfall) peaks occurred earlier. Moreover, results showed LIDs decreased pollution loads up to 25%.


2013 ◽  
Vol 67 (12) ◽  
pp. 2670-2676 ◽  
Author(s):  
Ingrid Keupers ◽  
Patrick Willems

The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (−14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.


Hydrology ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Golmar Golmohammadi ◽  
Ramesh P. Rudra ◽  
Gary W. Parkin ◽  
Priyantha B. Kulasekera ◽  
Merrin Macrae ◽  
...  

The detrimental impacts of agricultural subsurface tile flows and their associated pollutants on water quality is a major environmental issue in the Great Lakes region and many other places globally. A strong understanding of water quality indicators along with the contribution of tile-drained agriculture to water contamination is necessary to assess and reduce a significant source of non-point source pollution. In this study, DRAINMOD, a field-scale hydrology and water quality model, was applied to assess the impact of future climatic change on depth to water table, tile flow and associated nitrate loss from an 8.66 ha agricultural field near Londesborough, in Southwestern Ontario, Canada. The closest available climate data from a weather station approximately 10 km from the field site was used by the Ontario Ministry of Natural Resources and Forestry (MNRF) to generate future predictions of daily precipitation and maximum and minimum air temperatures required to create the weather files for DRAINMOD. Of the 28 models applied by MNRF, three models (CGCM3T47-Run5, GFDLCM2.0, and MIROC3.2hires) were selected based on the frequency of the models recommended for use in Ontario with SRA1B emission scenario. Results suggested that simulated tile flows and evapotranspiration (ET) in the 2071–2100 period are expected to increase by 7% and 14% compared to 1960–1990 period. Results also suggest that under future climates, significant increases in nitrate losses (about 50%) will occur along with the elevated tile flows. This work suggests that climate change will have a significant effect on field hydrology and water quality in tile-drained agricultural regions.


1998 ◽  
Vol 38 (10) ◽  
pp. 23-30
Author(s):  
Sarah Jubb ◽  
Philip Hulme ◽  
Ian Guymer ◽  
John Martin

This paper describes a preliminary investigation that identified factors important in the prediction of river water quality, especially regarding dissolved oxygen (DO) concentration. Intermittent discharges from combined sewer overflows (CSOs) within the sewerage, and overflows at water reclamation works (WRW) cause dynamic conditions with respect to both river hydraulics and water quality. The impact of such discharges has been investigated under both wet and dry weather flow conditions. Data collected from the River Maun, UK, has shown that an immediate, transient oxygen demand exists downstream of an outfall during storm conditions. The presence of a delayed oxygen demand has also been identified. With regard to modelling, initial investigations used a simplified channel and the Streeter-Phelps (1925) dissolved oxygen sag curve equation. Later, a model taking into account hydrodynamic, transport and dispersion processes was used. This suggested that processes other than water phase degradation of organic matter significantly affect the dissolved oxygen concentration downstream of the location of an intermittent discharge. It is proposed that the dynamic rate of reaeration and the sediment oxygen demand should be the focus of further investigation.


1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


Sign in / Sign up

Export Citation Format

Share Document