scholarly journals Assessment of Impacts of Climate Change on Tile Discharge and Nitrogen Yield Using the DRAINMOD Model

Hydrology ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Golmar Golmohammadi ◽  
Ramesh P. Rudra ◽  
Gary W. Parkin ◽  
Priyantha B. Kulasekera ◽  
Merrin Macrae ◽  
...  

The detrimental impacts of agricultural subsurface tile flows and their associated pollutants on water quality is a major environmental issue in the Great Lakes region and many other places globally. A strong understanding of water quality indicators along with the contribution of tile-drained agriculture to water contamination is necessary to assess and reduce a significant source of non-point source pollution. In this study, DRAINMOD, a field-scale hydrology and water quality model, was applied to assess the impact of future climatic change on depth to water table, tile flow and associated nitrate loss from an 8.66 ha agricultural field near Londesborough, in Southwestern Ontario, Canada. The closest available climate data from a weather station approximately 10 km from the field site was used by the Ontario Ministry of Natural Resources and Forestry (MNRF) to generate future predictions of daily precipitation and maximum and minimum air temperatures required to create the weather files for DRAINMOD. Of the 28 models applied by MNRF, three models (CGCM3T47-Run5, GFDLCM2.0, and MIROC3.2hires) were selected based on the frequency of the models recommended for use in Ontario with SRA1B emission scenario. Results suggested that simulated tile flows and evapotranspiration (ET) in the 2071–2100 period are expected to increase by 7% and 14% compared to 1960–1990 period. Results also suggest that under future climates, significant increases in nitrate losses (about 50%) will occur along with the elevated tile flows. This work suggests that climate change will have a significant effect on field hydrology and water quality in tile-drained agricultural regions.

Author(s):  
David Eugene Kimbrough

In this study, air temperatures were collected between 1985 and 2016 and compared to water temperatures in four locations in the distribution system of Pasadena Water & Power (PWP) that received imported surface water between 2001 and 2016 and from the purveyor of imported water.  The concentration of chloramine residual and nitrite concentrations were collected between 2001 and 2016 these five locations.  The results indicate that the median nighttime temperature of the period 2009 - 2016 was 1.6 oC warmer than the period of 1985 - 2000 and 0.5 oC warmer than the period 2001 - 2008.  The median water temperature in the four distribution system samples increased by 0.8 oC to 1.4 oC depending on the location over the study period (p<0.001).  The median chloramine concentration fell significantly (p<0.001) at three distribution system locations and the nitrite concentrations increased significantly at all four distribution system locations. 


2009 ◽  
Vol 40 (2-3) ◽  
pp. 138-152 ◽  
Author(s):  
B. A. Cox ◽  
P. G. Whitehead

A water quality model is used to assess the impact of possible climate change on dissolved oxygen (DO) in the Thames. The Thames catchment is densely populated and, typically, many pressures are anthropogenic. However, that same population also relies on the river for potable water supply and as a disposal route for treated wastewater. Thus, future water quality will be highly dependent on future activity. Dynamic and stochastic modelling has been used to assess the likely impacts on DO dynamics along the river system and the probability distributions associated with future variability. The modelling predictions indicate that warmer river temperatures and drought act to reduce dissolved oxygen concentrations in lowland river systems.


2018 ◽  
Author(s):  
Carmen Longo ◽  
◽  
Elizabeth Balgord ◽  
Timothy F. Diedesch ◽  
John All

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


2020 ◽  
Vol 48 (2) ◽  
pp. 1057-1069
Author(s):  
Radu POPESCU ◽  
Neculae ȘOFLETEA

The research carried out was aimed to assessing the phenological behavior of beech (Fagus sylvatica L.) in the southwestern area of the Carpathians, in submesothermal forest sites, differentiated from the majority mesothermal ones of this species. The data obtained may be used for predicting the phenological changes of the species, especially in the Carpathian area, under the future influence of expected climate change. Assessments for spring and autumn phenology (buds burst -BB and foliation, flowering and leaves senescence) were carried out on a transect with a difference in altitude of 1000 meters, in phenological research areas located at 200 m, 700 m and 1200 m. At each altitude level, 100 trees of I and II Kraft classes were phenologically characterized: 50 trees on the south-facing slope (sunny exposure) and 50 on the north-facing slope (shade exposure).The phenological data were interpreted in relation to climate data recorded in each area by a HOBO U23 Pro v2 sensor. The site conditions of submesothermal climate in the low altitude area led to DOY (day of the year) values below 100. The phenological differentiation of populations is evident in relation with the altitude, while at the same altitudinal level the influence of the exposure was much lower. The gradiental values by altitude sectors highlighted the nonlinearity of the development of foliation phenophase, the value being lower in the first 500 m, where the beech is under the impact of the submesothermal climate. It has been proven both the dependence of the foliation onset depending on the cumulation of temperatures in relation to the DOY moment and also on the values recorded throughout the vegetative rest. The altitudinal gradiental values resulting for flowering in the first and second altitudinal half of transect also differentiate the stands, but are lower than that resulting for BB. The leaves senescence has a delay of 1.8 up to 2.4 days per 100 meters altitude, and the length of the vegetation season is reduced more sharply in the upper half of the analyzed altitudinal transect. The sub-mesothermal climate could be involved in condensation of spring phenophases in the stands of the lower half of the researched area. Our data may be used for predicting the phenological changes, especially in the Carpathian area, under the expected climate change.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Mohammadreza Mohammadi ◽  
John Finnan ◽  
Chris Baker ◽  
Mark Sterling

This paper examines the impact that climate change may have on the lodging of oats in the Republic of Ireland and the UK. Through the consideration of a novel lodging model representing the motion of an oat plant due to the interaction of wind and rain and integrating future predictions of wind and rainfall due to climate change, appropriate conclusions have been made. In order to provide meteorological data for the lodging model, wind and rainfall inputs are analysed using 30 years’ time series corresponding to peak lodging months (June and July) from 38 meteorological stations in the United Kingdom and the Irish Republic, which enables the relevant probability density functions (PDFs) to be established. Moreover, climate data for the next six decades in the British Isles produced by UK climate change projections (UKCP18) are analysed, and future wind and rainfall PDFs are obtained. It is observed that the predicted changes likely to occur during the key growing period (June to July) in the next 30 years are in keeping with variations, which can occur due to different husbandry treatments/plant varieties. In addition, the utility of a double exponential function for representing the rainfall probability has been observed with appropriate values for the constants given.


Sign in / Sign up

Export Citation Format

Share Document