Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin

2015 ◽  
Vol 46 (6) ◽  
pp. 854-870 ◽  
Author(s):  
Ammar Rafiei Emam ◽  
Martin Kappas ◽  
Seyed Zeynalabedin Hosseini

The semi-arid regions of Iran have experienced severe water resources stress due to natural (e.g., drought) and anthropogenic (e.g., depletion of water in various sectors) factors. Assessing the impact of climate change on water resources and crop production could significantly help toward better water management and hence prevention of land degradation in this area. A hydrological model of the Razan–Ghahavand basin was used as a representative case study of a semi-arid region of Iran. Future climate scenarios in the mid-21st century were generated from four global circulation models (GCMs) with three scenarios under the fourth assessment report of Intergovernmental Panel on Climate Change emission projections. The GCMs have been downscaled based on observed data at 10 climate stations across the basin. The results showed that for the basin as a whole, the mean annual precipitation is likely to decrease while the maximum temperature increases. The changes in these two climate variables resulted in substantial reduction in groundwater recharge as the main source of water supply in this area. Furthermore, soil water content was decreased which resulted in the reduction of crop yield in rain-fed areas. Indeed, the risk of drought in the south and flooding in the north was high.

Author(s):  
V. Guhan ◽  
V. Geethalakshmi ◽  
R. Jagannathan ◽  
S. Panneerselvam ◽  
K. Bhuvaneswari

<p><strong>Abstract.</strong> Climate change induced extreme weather events such as drought and flood condition are likely to become more common and associated impacts on crop production will be more without proper irrigation planning. The present investigation was undertaken for assessing the impact of Climate change on tomato yield and water use efficiency (WUE) using AquaCrop model and RegCM 4.4 simulations. The water driven AquaCrop model was validated based on observation of field experiment conducted with four different dates of sowing (1st November, 15th November, 1st December, 15th December) at Ponnaniyar basin, Tiruchirappalli. Validation of AquaCrop model indicated the capability of AquaCrop in predicting tomato yield, biomass and WUE close to the observed data. Seasonal maximum and minimum temperatures over Tiruchirappalli are projected to increase in the mid-century under both RCP4.5 and RCP8.5 scenarios. Maximum temperature is expected to increase up to 1.7&amp;thinsp;&amp;deg;C/2.5&amp;thinsp;&amp;deg;C in SWM and 1.9&amp;thinsp;&amp;deg;C/2.9&amp;thinsp;&amp;deg;C in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways. Minimum temperature is expected to increase up to 1.6&amp;thinsp;&amp;deg;C/2.2&amp;thinsp;&amp;deg;C in SWM and 1.6&amp;thinsp;&amp;deg;C/2.1&amp;thinsp;&amp;deg;C in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways. Seasonal rainfall over Tiruchirappalli is expected to decrease with RCP4.5 and RCP8.5scenarios with different magnitude. Rainfall is expected to change to the tune of &amp;minus;1/&amp;minus;11 per cent in SWM and &amp;minus;2/&amp;minus;14 per cent in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


2015 ◽  
Vol 17 (3) ◽  
pp. 594-606 ◽  

<div> <p>The impact of climate change on water resources through increased evaporation combined with regional changes in precipitation characteristics has the potential to affect mean runoff, frequency and intensity of floods and droughts, soil moisture and water supply for irrigation and hydroelectric power generation. The Ganga-Brahmaputra-Meghna (GBM) system is the largest in India with a catchment area of about 110Mha, which is more than 43% of the cumulative catchment area of all the major rivers in the country. The river Damodar is an important sub catchment of GBM basin and its three tributaries- the Bokaro, the Konar and the Barakar form one important tributary of the Bhagirathi-Hughli (a tributary of Ganga) in its lower reaches. The present study is an attempt to assess the impacts of climate change on water resources of the four important Eastern River Basins namely Damodar, Subarnarekha, Mahanadi and Ajoy, which have immense importance in industrial and agricultural scenarios in eastern India. A distributed hydrological model (HEC-HMS) has been used on the four river basins using HadRM2 daily weather data for the period from 2041 to 2060 to predict the impact of climate change on water resources of these river systems.&nbsp;</p> </div> <p>&nbsp;</p>


2021 ◽  
Vol 4 (2) ◽  
pp. 159-169
Author(s):  
Eko Sumartono ◽  
Gita Mulyasari ◽  
Ketut Sukiyono

Bengkulu is said to be the center of the world's climate because of the influence of water conditions and the topography of the area where the rain cloud formation starts. The waters in Bengkulu Province become a meeting place for four ocean currents which eventually become an area where the evaporation process of forming rain clouds becomes the rainy or dry season and affects the world climate. Method to analyze descriptively, shows oldeman Classification and satellite rainfall estimation data is added. In relation to the Analysis of Potential Food Availability for the Coastal Areas of Bengkulu Province uses a quantifiable descriptive analysis method based. The results show that most are included in the Oldeman A1 climate zone, which means it is suitable for continuous rice but less production due to generally low radiation intensity throughout the year. In an effort to reduce or eliminate the impact of climate change on food crop production, it is necessary to suggest crop diversification, crop rotation, and the application of production enhancement technologies. Strategies in building food availability as a result of climate change are: First, develop food supplies originating from regional production and food reserves on a provincial scale. Second, Empowering small-scale food businesses which are the dominant characteristics of the agricultural economy, especially lowland rice and horticultural crops. Third, Increase technology dissemination and increase the capacity of farmers in adopting appropriate technology to increase crop productivity and business efficiency. Four, Promote the reduction of food loss through the use of food handling, processing and distribution technologies. 


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


Sign in / Sign up

Export Citation Format

Share Document