Assessing maximum potential water withdrawal for food production under climate change - an application in Spain

2014 ◽  
Vol 5 (4) ◽  
pp. 633-651
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias

This paper provides and tests a methodology to compute surface water (SW) availability for irrigation on regulated systems at large scale, considering different alternatives of streamflow monthly time series derived from regional climate models. SW availability for consumptive use for a river basin is estimated through the concept of maximum potential water withdrawal (MPWW). MPWW is defined as the maximum demand that can be supplied at a given point in the river network under certain conditions: management restrictions (such as ecological flows), demand priorities, monthly distribution of demand and required reliability. Calculation was applied in 567 basins that cover the entirety of mainland Spain to evaluate adaptation needs for agriculture by comparing MPWW for irrigation in the current situation and under climate change projections. The results show that streamflow monthly time series obtained from the regional climate model simulations and bias corrected by University of New Hampshire/Global Runoff Data Centre (UNH/GRDC) dataset and Schreiber's formula provide MPWW values similar to those obtained with the observed data under current situations. Under climate change projections, the capability to satisfy water requirements for agricultural production is significantly reduced and adaptation measures are necessary to mitigate the expected long-term impact.

2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


2010 ◽  
Vol 14 (7) ◽  
pp. 1247-1258 ◽  
Author(s):  
W. Buytaert ◽  
M. Vuille ◽  
A. Dewulf ◽  
R. Urrutia ◽  
A. Karmalkar ◽  
...  

Abstract. Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs) are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2010 ◽  
Vol 7 (2) ◽  
pp. 1821-1848 ◽  
Author(s):  
W. Buytaert ◽  
M. Vuille ◽  
A. Dewulf ◽  
R. Urrutia ◽  
A. Karmalkar ◽  
...  

Abstract. Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs) are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
L. A. Mansfield ◽  
P. J. Nowack ◽  
M. Kasoar ◽  
R. G. Everitt ◽  
W. J. Collins ◽  
...  

AbstractUnderstanding and estimating regional climate change under different anthropogenic emission scenarios is pivotal for informing societal adaptation and mitigation measures. However, the high computational complexity of state-of-the-art climate models remains a central bottleneck in this endeavour. Here we introduce a machine learning approach, which utilises a unique dataset of existing climate model simulations to learn relationships between short-term and long-term temperature responses to different climate forcing scenarios. This approach not only has the potential to accelerate climate change projections by reducing the costs of scenario computations, but also helps uncover early indicators of modelled long-term climate responses, which is of relevance to climate change detection, predictability, and attribution. Our results highlight challenges and opportunities for data-driven climate modelling, especially concerning the incorporation of even larger model datasets in the future. We therefore encourage extensive data sharing among research institutes to build ever more powerful climate response emulators, and thus to enable faster climate change projections.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1494
Author(s):  
Bernardo Teufel ◽  
Laxmi Sushama

Fluvial flooding in Canada is often snowmelt-driven, thus occurs mostly in spring, and has caused billions of dollars in damage in the past decade alone. In a warmer climate, increasing rainfall and changing snowmelt rates could lead to significant shifts in flood-generating mechanisms. Here, projected changes to flood-generating mechanisms in terms of the relative contribution of snowmelt and rainfall are assessed across Canada, based on an ensemble of transient climate change simulations performed using a state-of-the-art regional climate model. Changes to flood-generating mechanisms are assessed for both a late 21st century, high warming (i.e., Representative Concentration Pathway 8.5) scenario, and in a 2 °C global warming context. Under 2 °C of global warming, the relative contribution of snowmelt and rainfall to streamflow peaks is projected to remain close to that of the current climate, despite slightly increased rainfall contribution. In contrast, a high warming scenario leads to widespread increases in rainfall contribution and the emergence of hotspots of change in currently snowmelt-dominated regions across Canada. In addition, several regions in southern Canada would be projected to become rainfall dominated. These contrasting projections highlight the importance of climate change mitigation, as remaining below the 2 °C global warming threshold can avoid large changes over most regions, implying a low likelihood that expensive flood adaptation measures would be necessary.


2012 ◽  
Vol 16 (6) ◽  
pp. 1709-1723 ◽  
Author(s):  
D. González-Zeas ◽  
L. Garrote ◽  
A. Iglesias ◽  
A. Sordo-Ward

Abstract. An important step to assess water availability is to have monthly time series representative of the current situation. In this context, a simple methodology is presented for application in large-scale studies in regions where a properly calibrated hydrologic model is not available, using the output variables simulated by regional climate models (RCMs) of the European project PRUDENCE under current climate conditions (period 1961–1990). The methodology compares different interpolation methods and alternatives to generate annual times series that minimise the bias with respect to observed values. The objective is to identify the best alternative to obtain bias-corrected, monthly runoff time series from the output of RCM simulations. This study uses information from 338 basins in Spain that cover the entire mainland territory and whose observed values of natural runoff have been estimated by the distributed hydrological model SIMPA. Four interpolation methods for downscaling runoff to the basin scale from 10 RCMs are compared with emphasis on the ability of each method to reproduce the observed behaviour of this variable. The alternatives consider the use of the direct runoff of the RCMs and the mean annual runoff calculated using five functional forms of the aridity index, defined as the ratio between potential evapotranspiration and precipitation. In addition, the comparison with respect to the global runoff reference of the UNH/GRDC dataset is evaluated, as a contrast of the "best estimator" of current runoff on a large scale. Results show that the bias is minimised using the direct original interpolation method and the best alternative for bias correction of the monthly direct runoff time series of RCMs is the UNH/GRDC dataset, although the formula proposed by Schreiber (1904) also gives good results.


2013 ◽  
Vol 13 (2) ◽  
pp. 263-277 ◽  
Author(s):  
C. Dobler ◽  
G. Bürger ◽  
J. Stötter

Abstract. The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values.


2016 ◽  
Vol 20 (4) ◽  
pp. 1387-1403 ◽  
Author(s):  
Hjalte Jomo Danielsen Sørup ◽  
Ole Bøssing Christensen ◽  
Karsten Arnbjerg-Nielsen ◽  
Peter Steen Mikkelsen

Abstract. Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman–Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km  ×  60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.


Sign in / Sign up

Export Citation Format

Share Document