scholarly journals Changes in the wintertime hydroclimatic regime in St. John River, Maine, USA

Author(s):  
Jong-Suk Kim ◽  
Shaleen Jain ◽  
Taesam Lee

Abstract Changes in the flow regime in snowmelt- and ice-dominated rivers have important implications for navigation, flood hazard, recreation, and ecosystems. We investigated recent changes in the high flows of the St. John River basin in Maine, USA, with a view to quantify changes in high-flow characteristics, as well as extreme event estimates. The results analyzed herein demonstrate shifts in springtime streamflow as well as in emergent wintertime (January–February) streamflow over the past four decades. A Poisson-based regression approach was applied to develop a model for the diagnosis of weather–climate linkage. The sensitivity of episodic warm weather events to the negative phase of the Tropical–Northern Hemisphere (TNH) atmospheric teleconnection pattern is evident. Although a modest sample size of historical data on the weather–climate linkage imposes a limit in terms of reliability, the approach presented herein shows a modest role of the TNH pattern, in response to the warm phase of El Niño/Southern Oscillation, as one of the factors that contribute to hydroclimate variability in the St. John River basin. This diagnostic study sought to investigate the changes in the wintertime streamflow regime and the relative linkages with short-term concurrent weather events, as well as large-scale climatic linkages. This improved an understanding of hydrological extremes within a climatological context and offers new knowledge to inform water resources planning and decision-making.

2021 ◽  
Author(s):  
Waqar Ul Hassan ◽  
Munir Ahmad Nayak

<p>Compound weather events arise from combination of multiple climatic drivers or hazards and often result in disastrous socio-economic impacts. Compound drought and heatwave (CDHE) events have received considerable attention in recent years, but limited attention is given towards the understanding of feedback relationships between droughts and heatwaves at global hotspots of the compound events. Here, we identify the potential hotspots of extreme compound drought and heatwaves (ECDH) over the globe using standardized precipitation index (SPI) and Excess heat factor (EHF) as metrics for droughts and heatwaves, respectively. Besides the well know positive feedback between droughts and heatwaves, i.e., heatwaves amplify droughts and vice-versa, we hypothesize and test the possibility of negative feedback at distinct hotspots where heatwaves tend to abate droughts. Multiple hotspots were identified with positive and negative feedbacks among drought and heatwave intensities, supporting our hypothesis. We also analyzed the role of different local and large-scale global drivers (such as El-Niño Southern Oscillation) on the feedbacks at the hotspots. Our analysis has implications in predicting extreme compound droughts and heatwaves and provides new insights that will foster further research in this direction.</p>


2021 ◽  
Author(s):  
Yama Dixit ◽  
Stephen Chua ◽  
Yu Ting Yan ◽  
Adam Switzer

<p>The Maritime Continent (MC) is located within the Indo-Pacific Warm Pool, which is known as the largest area of warm sea surface temperatures with the highest rainfall on Earth that drives the global atmospheric and hydrologic circulation. The complex climatic system of the MC is controlled by large-scale phenomena such as the seasonal migration of the Intertropical Convergence Zone which causes the northwest and southeast monsoon circulation in the region as well as tropical Indo-Pacific climate phenomena, the Indian Ocean Dipole in the west and the El Niño-Southern Oscillation operating to the east of the MC. In addition to interactions of these climate phenomena, their influence varies across the region due to island topography and ocean–atmosphere fluxes. Despite dedicated efforts, a comprehensive picture of the impacts of abrupt climate events such as the ‘8.2 ka event’ during the Holocene on the MC has proved elusive. Here we use sedimentology and stable isotopes of benthic foraminifera collected from the marginal marine sediments off the Kallang River Basin, Singapore to reconstruct paleoenvironmental history of the early-mid Holocene. Owing to the high sedimentation rate (~4.4 mm/yr), the timing and nature of the ‘8.2 ka event’ was examined in detail in this region making this an invaluable and unique archive to study up to sub-centennial changes. Comparison of the Kallang record with other high-resolution marine and absolutely dated terrestrial archives speleothems revealed that the timing of the onset of ‘8.2 ka event’ in the western IPWP region lags the cooling in the North Atlantic and that of Asian and Indian monsoon failure, by ~100years possibly implying a north-south signal propagation. The termination of the ‘8.2 ka event’, however may have occurred near synchronously between high and low tropical regions at ~7.96ka BP possibly linked via both atmospheric and oceanic processes.</p><p> </p>


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1359 ◽  
Author(s):  
Scott Curtis ◽  
Thomas Crawford ◽  
Munshi Rahman ◽  
Bimal Paul ◽  
M. Miah ◽  
...  

Understanding seasonal precipitation input into river basins is important for linking large-scale climate drivers with societal water resources and the occurrence of hydrologic hazards such as floods and riverbank erosion. Using satellite data at 0.25-degree resolution, spatial patterns of monsoon (June-July-August-September) precipitation variability between 1983 and 2015 within the Ganges–Brahmaputra–Meghna (GBM) river basin are analyzed with Principal Component (PC) analysis and the first three modes (PC1, PC2 and PC3) are related to global atmospheric-oceanic fields. PC1 explains 88.7% of the variance in monsoonal precipitation and resembles climatology with the center of action over Bangladesh. The eigenvector coefficients show a downward trend consistent with studies reporting a recent decline in monsoon rainfall, but little interannual variability. PC2 explains 2.9% of the variance and shows rainfall maxima to the far western and eastern portions of the basin. PC2 has an apparent decadal cycle and surface and upper-air atmospheric height fields suggest the pattern could be forced by tropical South Atlantic heating and a Rossby wave train stemming from the North Atlantic, consistent with previous studies. Finally, PC3 explains 1.5% of the variance and has high spatial variability. The distribution of precipitation is somewhat zonal, with highest values at the southern border and at the Himalayan ridge. There is strong interannual variability associated with PC3, related to the El Nino/Southern Oscillation (ENSO). Next, we perform a hydroclimatological downscaling, as precipitation attributed to the three PCs was averaged over the Pfafstetter level-04 sub-basins obtained from the World Wildlife Fund (Gland, Switzerland). While PC1 was the principal contributor of rainfall for all sub-basins, PC2 contributed the most to rainfall in the western Ganges sub-basin (4524) and PC3 contributed the most to the rainfall in the northern Brahmaputra (4529). Monsoon rainfall within these two sub-basins were the only ones to show a significant relationship (negative) with ENSO, whereas four of the eight sub-basins had a significant relationship (positive) with sea surface temperature (SST) anomalies in the tropical South Atlantic. This work demonstrates a geographic dependence on climate teleconnections in the GBM that deserves further study.


2020 ◽  
Author(s):  
Zhiyi Zhao ◽  
Zhongda Lin ◽  
Fang Li

<p>Wildfires are common in boreal forests around the world and strongly affect regional ecosystem processes and global carbon cycle. Previous studies have suggested that local climate is a dominant driver of boreal fires. However, the impacts of large-scale atmospheric teleconnection patterns on boreal fires and related physical processes remain largely unclear. This study investigates the influence of nine leading atmospheric teleconnection modes and El Niño-Southern Oscillation (ENSO) on the interannual variability of simultaneous summer fires in the boreal regions based on 1997-2015 GFED4s burned area, NCEP/NCAR atmospheric reanalysis, and HadISST sea surface temperature. Results show that ENSO has only a weak effect on boreal fires, distinct from its robust influence on the tropical fires. Instead, the interannual variability of burned area in the boreal regions is significantly regulated by five teleconnection patterns. Specifically, East Pacific-North Pacific (EP/NP) and East Atlantic/West Russia (EA/WR) patterns affect the burned area in North America, North Atlantic Oscillation (NAO) and East Atlantic (EA) patterns for Asia, and the Pacific-North American (PNA) pattern for Europe. Related to the teleconnections, the larger burned area is attributable to warmer surface by an anomalous high-pressure above and drier surface due to less moisture transport from the neighboring oceans. The results improve our understanding of driving forces of interannual variability of boreal fires and then regional and global carbon budgets.</p>


2020 ◽  
Author(s):  
Pascal Haegeli ◽  
Bret Shandro ◽  
Patrick Mair

Abstract. Numerous large-scale atmosphere-ocean oscillations including the El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Pacific North American Teleconnection Pattern (PNA) and the Artic Oscillation (AO) are known to substantially affect winter weather patterns in western Canada. Several studies have examined the effect of these oscillations on avalanche hazard using long-term avalanche activity records from highway avalanche safety programs. While these studies offer valuable insights, they do not offer a comprehensive perspective on the influence of these oscillations because the underlying data only represent the conditions at a few point locations in western Canada where avalanches are tightly managed. We present a new approach for gaining insight into the relationship between atmosphere-ocean oscillations and avalanche hazard in western Canada that uses avalanche problem information published in public avalanche bulletins during the winters of 2010 to 2019. For each avalanche problem type, we calculate seasonal prevalence values for each forecast area, elevation band and season, which are then included in a series of beta mixed-effects regression models to explore both the overall and regional effects of the Pacific-centered oscillations (PO; including ENSO, PDO, PNA) and AO on the nature of avalanche hazard in the study area. Even though our study period is short, we find significant negative effects of PO on the prevalence of Storm slab avalanche problems, Wind slab avalanche problems, and Dry loose avalanche problems, which agree reasonably well with the known impacts of PO on winter weather in western Canada. The analysis also reveals a positive relationship between AO and the prevalence of Deep persistent slab avalanche problems particularly in the Rocky Mountains. In addition, we also find several smaller-scale patterns that highlight that the avalanche hazard response to these oscillations varies regionally. Our study shows that the forecaster judgment included in the avalanche problem assessments adds considerable value for these types of climate analyses. Since the predictability of the most important atmosphere-ocean oscillations is continuously improving, a better understanding of their effect on avalanche hazard can contribute to the development of informative seasonal avalanche forecasts and a better understanding of the effect of climate change on avalanche hazard.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 942
Author(s):  
Iuliia Shustikova ◽  
Jeffrey C. Neal ◽  
Alessio Domeneghetti ◽  
Paul D. Bates ◽  
Sergiy Vorogushyn ◽  
...  

Levee failures due to floods often cause considerable economic damage and life losses in inundated dike-protected areas, and significantly change flood hazard upstream and downstream the breach location during the event. We present a new extension for the LISFLOOD-FP hydrodynamic model which allows levee breaching along embankments in fully two-dimensional (2D) mode. Our extension allows for breach simulations in 2D structured grid hydrodynamic models at different scales and for different hydraulic loads in a computationally efficient manner. A series of tests performed on synthetic and historic events of different scale and magnitude show that the breaching module is numerically stable and reliable. We simulated breaches on synthetic terrain using unsteady flow as an upstream boundary condition and compared the outcomes with an identical setup of a full-momentum 2D solver. The synthetic tests showed that differences in the maximum flow through the breach between the two models were less than 1%, while for a small-scale flood event on the Secchia River (Italy), it was underestimated by 7% compared to a reference study. A large scale extreme event simulation on the Po River (Italy) resulted in 83% accuracy (critical success index).


2020 ◽  
Vol 33 (23) ◽  
pp. 10287-10303
Author(s):  
Ming Zhao

AbstractA 50-km-resolution GFDL AM4 well captures many aspects of observed atmospheric river (AR) characteristics including the probability density functions of AR length, width, length–width ratio, geographical location, and the magnitude and direction of AR mean vertically integrated vapor transport (IVT), with the model typically producing stronger and narrower ARs than the ERA-Interim results. Despite significant regional biases, the model well reproduces the observed spatial distribution of AR frequency and AR variability in response to large-scale circulation patterns such as El Niño–Southern Oscillation (ENSO), the Northern and Southern Hemisphere annular modes (NAM and SAM), and the Pacific–North American (PNA) teleconnection pattern. For global warming scenarios, in contrast to most previous studies that show a large increase in AR length and width and therefore the occurrence frequency of AR conditions at a given location, this study shows only a modest increase in these quantities. However, the model produces a large increase in strong ARs with the frequency of category 3–5 ARs rising by roughly 100%–300% K−1. The global mean AR intensity as well as AR intensity percentiles at most percent ranks increases by 5%–8% K−1, roughly consistent with the Clausius–Clapeyron scaling of water vapor. Finally, the results point out the importance of AR IVT thresholds in quantifying modeled AR response to global warming.


2013 ◽  
Vol 26 (4) ◽  
pp. 1268-1285 ◽  
Author(s):  
Arun Kumar ◽  
Hui Wang ◽  
Wanqiu Wang ◽  
Yan Xue ◽  
Zeng-Zhen Hu

Abstract Based on analysis of a coupled model simulations with and without variability associated with the El Niño–Southern Oscillation (ENSO), it is demonstrated that knowing the current value of the ocean surface temperature–based index of the Pacific decadal oscillation (the OPDO index), and the corresponding atmospheric teleconnection pattern, does not add a predictive value for atmospheric anomalies in subsequent months. This is because although the OPDO index evolves on a slow time scale, it does not constrain the atmospheric variability in subsequent months, which retains its character of white noise stochastic variability and remains largely unpredictable. Further, the OPDO adds little to the atmospheric predictability originating from the tropical Pacific during ENSO years.


2020 ◽  
Vol 104 (3) ◽  
pp. 2027-2049
Author(s):  
A. Curran ◽  
Karin De Bruijn ◽  
Alessio Domeneghetti ◽  
Federica Bianchi ◽  
M. Kok ◽  
...  

Abstract Reliable hazard analysis is crucial in the flood risk management of river basins. For the floodplains of large, developed rivers, flood hazard analysis often needs to account for the complex hydrology of multiple tributaries and the potential failure of dikes. Estimating this hazard using deterministic methods ignores two major aspects of large-scale risk analysis: the spatial–temporal variability of extreme events caused by tributaries, and the uncertainty of dike breach development. Innovative stochastic methods are here developed to account for these uncertainties and are applied to the Po River in Italy. The effects of using these stochastic methods are compared against deterministic equivalents, and the methods are combined to demonstrate applications for an overall stochastic hazard analysis. The results show these uncertainties can impact extreme event water levels by more than 2 m at certain channel locations, and also affect inundation and breaching patterns. The combined hazard analysis allows for probability distributions of flood hazard and dike failure to be developed, which can be used to assess future flood risk management measures.


2013 ◽  
Vol 17 (5) ◽  
pp. 2069-2081 ◽  
Author(s):  
T. A. Räsänen ◽  
C. Lehr ◽  
I. Mellin ◽  
P. J. Ward ◽  
M. Kummu

Abstract. Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI) from the Monsoon Asia Drought Atlas (MADA). Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300–2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern Oscillation (ENSO) activity.


Sign in / Sign up

Export Citation Format

Share Document