Simulations of Atmospheric Rivers, Their Variability, and Response to Global Warming Using GFDL’s New High-Resolution General Circulation Model

2020 ◽  
Vol 33 (23) ◽  
pp. 10287-10303
Author(s):  
Ming Zhao

AbstractA 50-km-resolution GFDL AM4 well captures many aspects of observed atmospheric river (AR) characteristics including the probability density functions of AR length, width, length–width ratio, geographical location, and the magnitude and direction of AR mean vertically integrated vapor transport (IVT), with the model typically producing stronger and narrower ARs than the ERA-Interim results. Despite significant regional biases, the model well reproduces the observed spatial distribution of AR frequency and AR variability in response to large-scale circulation patterns such as El Niño–Southern Oscillation (ENSO), the Northern and Southern Hemisphere annular modes (NAM and SAM), and the Pacific–North American (PNA) teleconnection pattern. For global warming scenarios, in contrast to most previous studies that show a large increase in AR length and width and therefore the occurrence frequency of AR conditions at a given location, this study shows only a modest increase in these quantities. However, the model produces a large increase in strong ARs with the frequency of category 3–5 ARs rising by roughly 100%–300% K−1. The global mean AR intensity as well as AR intensity percentiles at most percent ranks increases by 5%–8% K−1, roughly consistent with the Clausius–Clapeyron scaling of water vapor. Finally, the results point out the importance of AR IVT thresholds in quantifying modeled AR response to global warming.

2016 ◽  
Vol 29 (18) ◽  
pp. 6727-6749 ◽  
Author(s):  
Young-Kwon Lim ◽  
Siegfried D. Schubert ◽  
Oreste Reale ◽  
Andrea M. Molod ◽  
Max J. Suarez ◽  
...  

Abstract Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally constrained simulations with the NASA Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model. The climate modes investigated are El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic meridional mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic) led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low-latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes and not just to ENSO alone. Examination of seasonal predictability reveals that the predictive skill of the three modes is limited over tropics to subtropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.


2008 ◽  
Vol 21 (20) ◽  
pp. 5204-5228 ◽  
Author(s):  
S. Gualdi ◽  
E. Scoccimarro ◽  
A. Navarra

Abstract This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs.


1996 ◽  
Vol 14 (10) ◽  
pp. 1066-1077 ◽  
Author(s):  
S. Trzaska ◽  
V. Moron ◽  
B. Fontaine

Abstract. This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO) phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns) were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST) patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP) climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder) than the long-term mean in the southern hemisphere (northern hemisphere)]. Atlantic SSTAs may also play a significant role.


2017 ◽  
Vol 30 (22) ◽  
pp. 8845-8864 ◽  
Author(s):  
Li Tao ◽  
Tim Li ◽  
Yuan-Hui Ke ◽  
Jiu-Wei Zhao

A Pacific–Japan (PJ) pattern index is defined based on the singular value decomposition (SVD) analysis of summertime 500-hPa height in East Asia and precipitation in the tropical western North Pacific (WNP). The time series of this PJ index shows clearly the interannual and interdecadal variations since 1948. Idealized atmospheric general circulation model (AGCM) experiments were carried out to understand the remote and local SST forcing in causing the interannual variations of the PJ pattern and interdecadal variations of the PJ-like pattern. It is found that the PJ interannual variation is closely related to El Niño–Southern Oscillation (ENSO). A basinwide warming occurs in the tropical Indian Ocean (TIO) during El Niño mature winter. The TIO warming persists from the El Niño peak winter to the succeeding summer. Meanwhile, a cold SST anomaly (SSTA) appears in the eastern WNP and persists from the El Niño mature winter to the succeeding summer. Idealized AGCM experiments that separate the TIO and WNP SSTA forcing effects show that both the remote eastern TIO forcing and local WNP SSTA forcing are important in affecting atmospheric heating anomaly in the WNP monsoon region, which further impacts the PJ interannual teleconnection pattern over East Asia. In contrast to the interannual variation, the interdecadal change of the PJ-like pattern is primarily affected by the interdecadal change of SST in the TIO rather than by the local SSTA in the WNP.


2020 ◽  
Author(s):  
Sophie Cravatte ◽  
Guillaume Serazin ◽  
Thierry Penduff ◽  
Christophe Menkes

Abstract. The Southwest Pacific Ocean sits at a bifurcation where southern subtropical waters are redistributed equatorward and poleward by different ocean currents. The processes governing the interannual variability of these currents are not completely understood. This issue is investigated using a probabilistic modeling strategy that allows disentangling the atmospherically-forced deterministic ocean variability and the chaotic intrinsic ocean variability. A large ensemble of 50 simulations performed with the same ocean general circulation model (OGCM) driven by the same realistic atmospheric forcing that only differ by a small initial perturbation is analyzed over 1980–2015. Our results show that, in the Southwest Pacific, the interannual variability of the transports is strongly dominated by chaotic ocean variability south of 20° S. In the tropics, while the interannual variability of transports and eddy kinetic energy modulation is largely deterministic and explained by El Nino Southern Oscillation (ENSO), ocean nonlinear processes still explain 10 to 20 % of their interannual variance at large-scale. Regions of strong chaotic variance generally coincide with regions of high mesoscale activity, suggesting that a spontaneous inverse cascade is at work from mesoscale toward lower frequencies and larger scales. The spatiotemporal features of the low-frequency oceanic chaotic variability are complex but spatially coherent within certain regions. In the Subtropical Countercurrent area, they appear as interannually-varying, zonally elongated alternating current structures, while in the EAC region, they are eddy-shaped. Given this strong imprint of large-scale chaotic oceanic fluctuations, our results question the attribution of interannual variability to the atmospheric forcing in the region from point-wise observations and one-member simulations.


2006 ◽  
Vol 6 ◽  
pp. 95-101 ◽  
Author(s):  
B. Nyenzi ◽  
P. F. Lefale

Abstract. It is widely accepted by the international scientific community that human activities have increased atmospheric concentrations of greenhouse gases (GHG) and aerosols since the pre-industrial era. This increase has contributed to most of the warming (0.6±0.2°C) observed over the 20th century, land areas warming more than the oceans, with the 1990s very likely to be the warmest decade of the 20th century (IPCC, 2001). How this warming influences the occurrence, severity and frequency of ENSO episodes remains highly uncertain. The IPCC (2001) assessment of the scientific literature found insufficient evidence to suggest any direct attribution between increase in ENSO events that occurred in the last 20 to 30 years of the 20th century and global warming (IPCC, 2001). However, assessments carried out since then (e.g. IPCC Fourth Assessment Report (AR4), in preparations) suggest El Niño events have become more frequent, persistent and intense during the last 20 to 30 years compared to the previous 100 years. Attribution to global warming, however, remains highly uncertain. Efforts to simulate and model past, present and future behaviour of ENSO under a warming world due to enhanced GHG concentrations produce conflicting results. Since substantial internally-generated variability of ENSO behaviour on multi-decadal to century timescales occurs in long, unforced atmospheric-oceanic general circulation model (AOGCM) simulations, the attribution of past and future changes in ENSO amplitude and frequency to external forcing like GHG concentrations cannot be made with certainty. Such attribution would require extensive use of ensemble climate experiments or long experiments with stabilised GHG forcing. Although there are now better ENSO simulations in AOGCM, further model improvements are needed to simulate a more realistic Pacific climatology and seasonal cycle of the key modes influencing the climate of the region, as well as more realistic ENSO variability. More research is needed to further enhance scientific understanding of possible teleconnections between ENSO and global warming. It is worth noting the IPCC AR4 due to be release in September 2007, would provide a more detailed assessment of ENSO and global warming than what is being covered in this paper.


2020 ◽  
Author(s):  
Emanuele Di Carlo ◽  
Paolo Ruggieri ◽  
Paolo Davini ◽  
Stefano Tibaldi ◽  
Susanna Corti

<pre>Understanding how the general circulation of the atmosphere is affected by global warming is one of the grand challenges in climate science. Climate models are a valuable tool to: i) identifying potential mechanism for changes in general circulation, ii) recognizing signals that can be related to external forcing and iii) produce projections for future scenarios. Despite the use of large ensemble of continuosly improving climate models, uncertainty for the extratropical circulation is still large. It is therefore important to understand processes driving the variability of the circulation in climate models and how these processes are affected by model bias. To characterize the effect of models bias on the response to a given forcing, several simulations were performed with the Simplified Parameterizations, primitivE - Equation DYnamics (SPEEDY), an intermediate complexity model developed by International Center for Theoretical Physics (ICTP). Four simulations are performed with a modified orography in order to obtain an atmospheric circulation at mid-latitudes characterized by different mean states and a control climate simulation carried in standard configuration is used as baseline. For each of these experiments, we have studied the climatic response to El Niño Southern Oscillation (ENSO) and to the Atlantic Multidecadal Variability (AMV). All the <em>Sensitivity </em>simulations were performed with a large ensemble (~100 members).</pre> <pre>Results show that indeed the model response is non-negligibly influenced by its mean state and reveal geographic areas where the sensitivity is large. On the other hand, they also show large scale regions of the world where the atmospheric response to ENSO and AMV is unlikely to depend on the atmospheric mean state. We also found that the relationship between changes in the model mean state and the response to the forcing appears to be non linear. These results cam be used to interpret and understand multi-model spread in atmospheric response to aforementioned surface condition.</pre>


Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 487-507
Author(s):  
Sophie Cravatte ◽  
Guillaume Serazin ◽  
Thierry Penduff ◽  
Christophe Menkes

Abstract. The southwestern Pacific Ocean sits at a bifurcation where southern subtropical waters are redistributed equatorward and poleward by different ocean currents. The processes governing the interannual variability of these currents are not completely understood. This issue is investigated using a probabilistic modeling strategy that allows disentangling the atmospherically forced deterministic ocean variability and the chaotic intrinsic ocean variability. A large ensemble of 50 simulations performed with the same ocean general circulation model (OGCM) driven by the same realistic atmospheric forcing and only differing by a small initial perturbation is analyzed over 1980–2015. Our results show that, in the southwestern Pacific, the interannual variability of the transports is strongly dominated by chaotic ocean variability south of 20∘ S. In the tropics, while the interannual variability of transports and eddy kinetic energy modulation are largely deterministic and explained by the El Niño–Southern Oscillation (ENSO), ocean nonlinear processes still explain 10 % to 20 % of their interannual variance at large scale. Regions of strong chaotic variance generally coincide with regions of high mesoscale activity, suggesting that a spontaneous inverse cascade is at work from the mesoscale toward lower frequencies and larger scales. The spatiotemporal features of the low-frequency oceanic chaotic variability are complex but spatially coherent within certain regions. In the Subtropical Countercurrent area, they appear as interannually varying, zonally elongated alternating current structures, while in the EAC (East Australian Current) region, they are eddy-shaped. Given this strong imprint of large-scale chaotic oceanic fluctuations, our results question the attribution of interannual variability to the atmospheric forcing in the region from pointwise observations and one-member simulations.


2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


Sign in / Sign up

Export Citation Format

Share Document