scholarly journals The effect of different drinking water in culture medium on feces microbiota diversity

Author(s):  
Kun Zhou ◽  
Weili Liu ◽  
Zhaoli Chen ◽  
Dong Yang ◽  
Zhigang Qiu ◽  
...  

Abstract The human gut harbors trillions of microbes, which are extremely important to the health of the host. However, the effect of drinking water on gut microbiota has been poorly understood. In this study, we explored the response of BALB/c mice gut bacterial community (feces) to the different types of drinking water, including commercial bottled mineral water (MW), natural water (NW), purified water (PW) and tap water (TW). Feces were cultured with Brain Heart Infusion Broth dissolved in four types of drinking water. 16S rRNA gene analysis was performed. Our results reveal that the microbiota composition is different among culturing with four types of drinking water. As the culture time increases, the number of OTUs significantly decreased, except under the aerobic condition of MW. Under aerobic conditions on the 5th day, the considerable differences of alpha diversity index are found between MW and three others, and there are the most unique taxa in MW group. Importantly, the LEfSe analysis discovers that the Bacteroidetes taxa dominate the differences between MW and the other water types. Our findings demonstrate that the mineral water as a culture medium may lead to a progressive increase of the gut microbiota diversity by providing the growth convenience to Bacteroidetes.

2019 ◽  
Author(s):  
Kun Zhou ◽  
Weili Liu ◽  
Zhaoli Chen ◽  
Dong Yang ◽  
Zhongwei Yang ◽  
...  

Abstract Background: The human gut harbors trillions of microbes, strongly bearing great importance for the health of the host. However, the effect of drinking water on gut microbiota has been poorly understood. Results: In this study, we explored the response of BALB/c mice gut bacterial community (feces) to the different types of drinking water, including commercial bottled mineral water(MW), natural water(NW), purified water(PW) and tap water(TW). Feces were cultured with Brain Heart Infusion Broth dissolved in 4 types of drinking water. 16S rRNA sequencing analysis was performed. Our results reveal that the gut microbiota composition is different among culturing with 4 types of drinking water. As the culture time increases, the number of OTUs significantly decreased except under the aerobic condition of MW. Under the aerobic condition in the 5th day, the considerable differences of alpha diversity index are found between MW and 3 others, consistent to that there are the most unique taxa in MW group. Importantly, the LEfSe analysis discovers that the Bacteroidetes taxa dominate the differences between MW and the other water types. Conclusion: our findings demonstrate that the mineral water can lead to a progressive increase of the microbiota diversity by providing the growth convenience to Bacteroidetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
André Moreira-Rosário ◽  
Cláudia Marques ◽  
Hélder Pinheiro ◽  
João Ricardo Araújo ◽  
Pedro Ribeiro ◽  
...  

The risk factors for coronavirus disease 2019 (COVID-19) severity are still poorly understood. Considering the pivotal role of the gut microbiota on host immune and inflammatory functions, we investigated the association between changes in the gut microbiota composition and the clinical severity of COVID-19. We conducted a multicenter cross-sectional study prospectively enrolling 115 COVID-19 patients categorized according to: (1) the WHO Clinical Progression Scale—mild, 19 (16.5%); moderate, 37 (32.2%); or severe, 59 (51.3%), and (2) the location of recovery from COVID-19—ambulatory, 14 (household isolation, 12.2%); hospitalized in ward, 40 (34.8%); or hospitalized in the intensive care unit, 61 (53.0%). Gut microbiota analysis was performed through 16S rRNA gene sequencing, and the data obtained were further related to the clinical parameters of COVID-19 patients. The risk factors for COVID-19 severity were identified by univariate and multivariable logistic regression models. In comparison to mild COVID-19 patients, the gut microbiota of moderate and severe patients have: (a) lower Firmicutes/Bacteroidetes ratio; (b) higher abundance of Proteobacteria; and (c) lower abundance of beneficial butyrate-producing bacteria such as the genera Roseburia and Lachnospira. Multivariable regression analysis showed that the Shannon diversity index [odds ratio (OR) = 2.85, 95% CI = 1.09–7.41, p = 0.032) and C-reactive protein (OR = 3.45, 95% CI = 1.33–8.91, p = 0.011) are risk factors for severe COVID-19 (a score of 6 or higher in the WHO Clinical Progression Scale). In conclusion, our results demonstrated that hospitalized patients with moderate and severe COVID-19 have microbial signatures of gut dysbiosis; for the first time, the gut microbiota diversity is pointed out as a prognostic biomarker of COVID-19 severity.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Azrina Azlan ◽  
Hock Eng Khoo ◽  
Mohd Aizat Idris ◽  
Amin Ismail ◽  
Muhammad Rizal Razman

The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.


2008 ◽  
Vol 8 (5) ◽  
pp. 527-532 ◽  
Author(s):  
K. Henne ◽  
L. Kahlisch ◽  
J. Draheim ◽  
I. Brettar ◽  
M. G. Höfle

Despite the relevance for public health, surveillance of drinking water supply systems (DWSS) in Europe is mainly achieved by cultivation based detection of indicator bacteria. The study presented here demonstrates the use of molecular analysis based on fingerprints of DNA extracted from drinking water bacteria as a valuable monitoring tool of DWSS and was exemplified for a DWWS in Northern Germany. The analysis of the bacterial community of drinking water was performed by a set of 16S rRNA gene based fingerprints, sequence analysis of relevant bands and phylogenetic assignment of the 16S rRNA sequences. We assessed the microflora of drinking water originating from two reservoirs in the Harz Mountains. The taxonomic composition of the bacterial communities from both reservoirs was very different at the species level reflecting the different limnological conditions. Detailed analysis of the seasonal community dynamics of the tap water revealed a significant influence of both source waters on the composition of the microflora and demonstrated the relevance of the raw water microflora for the drinking water reaching the consumer. According to our experience, molecular analysis based on fingerprints of different degrees of resolution can be considered as a valuable monitoring tool of DWSS.


2008 ◽  
Vol 51 (5) ◽  
pp. 1049-1055 ◽  
Author(s):  
Denise de Oliveira Scoaris ◽  
Fernando Cezar Bizerra ◽  
Sueli Fumie Yamada-Ogatta ◽  
Benício Alves de Abreu Filho ◽  
Tânia Ueda-Nakamura ◽  
...  

The aim of this work was to study the occurrence of Aeromonas sp in the bottled mineral water, well water and tap water from the municipal supplies. Positive samples were found for Aeromonas spp. 12.7% from the mineral water, 8.3% from the artesian water and 6.5% from the tap water. The recovery of Aeromonas spp. was significantly higher in the bottled mineral and artesian water than in the tap water from municipal supplies. The occurrence of the Aeromonas spp. did not correlate significantly with the contamination indicator bacteria (i.e. total coliforms) in the artesian water samples. However, a significant correlation was found between Aeromonas spp. and total coliforms in the both mineral water and tap water samples. The presence or absence of a correlation between the indicator bacteria and Aeromonas could reflect the occasional appearance of the pathogen in the drinking water and the different rates of survival and recovery of these agents compared with those fecal indicators. The finding that 41.6, 14.8 and 9.0 % of the artesian water, bottled mineral water and tap water, respectively, sampled in the current study failed to meet the Brazilian standard for total coliforms in the drinking water should therefore be of concern.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1675 ◽  
Author(s):  
Catharina Missailidis ◽  
Nikolaj Sørensen ◽  
Senait Ashenafi ◽  
Wondwossen Amogne ◽  
Endale Kassa ◽  
...  

Dysbiosis and a dysregulated gut immune barrier function contributes to chronic immune activation in HIV-1 infection. We investigated if nutritional supplementation with vitamin D and phenylbutyrate could improve gut-derived inflammation, selected microbial metabolites, and composition of the gut microbiota. Treatment-naïve HIV-1-infected individuals (n = 167) were included from a double-blind, randomized, and placebo-controlled trial of daily 5000 IU vitamin D and 500 mg phenylbutyrate for 16 weeks (Clinicaltrials.gov NCT01702974). Baseline and per-protocol plasma samples at week 16 were analysed for soluble CD14, the antimicrobial peptide LL-37, kynurenine/tryptophan-ratio, TMAO, choline, and betaine. Assessment of the gut microbiota involved 16S rRNA gene sequencing of colonic biopsies. Vitamin D + phenylbutyrate treatment significantly increased 25-hydroxyvitamin D levels (p < 0.001) but had no effects on sCD14, the kynurenine/tryptophan-ratio, TMAO, or choline levels. Subgroup-analyses of vitamin D insufficient subjects demonstrated a significant increase of LL-37 in the treatment group (p = 0.02), whereas treatment failed to significantly impact LL-37-levels in multiple regression analysis. Further, no effects on the microbiota was found in number of operational taxonomic units (p = 0.71), Shannon microbial diversity index (p = 0.82), or in principal component analyses (p = 0.83). Nutritional supplementation with vitamin D + phenylbutyrate did not modulate gut-derived inflammatory markers or microbial composition in treatment-naïve HIV-1 individuals with active viral replication.


Nutrients ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Jacobo de la Cuesta-Zuluaga ◽  
Noel Mueller ◽  
Rafael Álvarez-Quintero ◽  
Eliana Velásquez-Mejía ◽  
Jelver Sierra ◽  
...  

Fiber fermentation by gut microbiota yields short-chain fatty acids (SCFAs) that are either absorbed by the gut or excreted in feces. Studies are conflicting as to whether SCFAs are beneficial or detrimental to cardiometabolic health, and how gut microbiota associated with SCFAs is unclear. In this study of 441 community-dwelling adults, we examined associations of fecal SCFAs, gut microbiota diversity and composition, gut permeability, and cardiometabolic outcomes, including obesity and hypertension. We assessed fecal microbiota by 16S rRNA gene sequencing, and SCFA concentrations by gas chromatography/mass spectrometry. Fecal SCFA concentrations were inversely associated with microbiota diversity, and 70 unique microbial taxa were differentially associated with at least one SCFA (acetate, butyrate or propionate). Higher SCFA concentrations were associated with a measure of gut permeability, markers of metabolic dysregulation, obesity and hypertension. Microbial diversity showed association with these outcomes in the opposite direction. Associations were significant after adjusting for measured confounders. In conclusion, higher SCFA excretion was associated with evidence of gut dysbiosis, gut permeability, excess adiposity, and cardiometabolic risk factors. Studies assessing both fecal and circulating SCFAs are needed to test the hypothesis that the association of higher fecal SCFAs with obesity and cardiometabolic dysregulation is due to less efficient SCFA absorption.


2013 ◽  
Vol 7 (10) ◽  
pp. 1922-1932 ◽  
Author(s):  
Adam C-N Wong ◽  
John M Chaston ◽  
Angela E Douglas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shunjie Bai ◽  
Wei Wang ◽  
Ting Wang ◽  
Juan Li ◽  
Shuxiao Zhang ◽  
...  

AbstractBoth inflammatory processes and gut microbiota have been implicated in the pathophysiology of depressive disorders. The class B scavenger receptor CD36 is involved in the cytotoxicity associated with inflammation. However, its role in depression has not yet been examined. In this study, we investigated whether CD36 affects depression by modulating the microbiota-gut-inflammasome-brain axis. We used CD36−/− (knockout) mice subjected to chronic social defeat stress, and measured the expression of CD36 in these depressed mice and in patients with depression. The hippocampus of CD36−/− mice was used to investigate changes in the NLRP3 inflammasome signaling pathway. The 16S rRNA gene sequence-based approach was used to compare the cecal microbial communities in CD36−/− and WT mice. The CD36 deficiency in CD36−/− mice alleviated chronic stress-induced depression-like behaviors. CD36 was upregulated in depressed mice as well as in depressed patients. Furthermore, the NLRP3 inflammasome signaling pathway was downregulated in the hippocampus of CD36−/− mice. The Simpson Diversity Index revealed increased cecal bacterial alpha-diversity in the CD36−/− mice. Among genera, Bacteroides, Rikenella, and Alloprevotella were significantly more abundant in the CD36−/− mice, whereas Allobaculum was less abundant, consistent with the attenuated inflammation in the hippocampus of CD36−/− mice. Our findings suggest that CD36 deficiency changes the gut microbiota composition, which in turn may impact depressive-like behaviors by affecting the inflammasome pathway.


2021 ◽  
Author(s):  
André Moreira-Rosário ◽  
Cláudia Marques ◽  
Hélder Pinheiro ◽  
João Ricardo Araújo ◽  
Pedro Ribeiro ◽  
...  

AbstractRisk factors for COVID-19 disease severity are still poorly understood. Considering the pivotal role of gut microbiota on host immune and inflammatory functions, we investigated the association between changes in gut microbiota composition and the clinical severity of COVID-19. We conducted a multicentre cross-sectional study prospectively enrolling 115 COVID-19 patients categorized according to: 1) WHO Clinical Progression Scale - mild 19 (16.5%), moderate 37 (32.2%) or severe 59 (51.3%); and 2) location of recovery from COVID-19 - ambulatory 14 (household isolation; 12.2%), hospitalized in ward 40 (34.8%) or intensive care unit 61 (53.0%). Gut microbiota analysis was performed through 16S rRNA gene sequencing and data obtained was further related with clinical parameters of COVID-19 patients. Risk factors for COVID-19 severity were identified by univariate and multivariable logistic regression models.In comparison with mild COVID-19 patients, the gut microbiota of moderate and severe patients has: a) lower Firmicutes/Bacteroidetes ratio, b) higher abundance of Proteobacteria; and c) lower abundance of beneficial butyrate-producing bacteria such as Roseburia and Lachnospira genera. Multivariable regression analysis showed that Shannon index diversity (odds ratio [OR] 2.85 [95% CI 1.09-7.41]; p=0.032) and C-Reactive Protein (OR 3.45 [95% CI 1.33-8.91]; p=0.011) were risk factors for COVID-19 severe disease (a score of 6 or higher in WHO clinical progression scale).In conclusion, our results demonstrated that hospitalised moderate and severe COVID-19 patients have microbial signatures of gut dysbiosis and for the first time, the gut microbiota diversity is pointed out as a prognostic biomarker for COVID-19 disease severity.


Sign in / Sign up

Export Citation Format

Share Document