Conjunctive management of surface and groundwater in transboundary watercourses: a first assessment

Water Policy ◽  
2018 ◽  
Vol 20 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Jonathan Lautze ◽  
Bunyod Holmatov ◽  
Davison Saruchera ◽  
Karen G. Villholth

Abstract Cooperative management of transboundary river basins is widely recognized as important. Emphasis on joint management of shared aquifers has also grown in recent years. Perhaps surprisingly, despite abundant focus on transboundary surface water and growing focus on shared groundwater, there is scant focus on their intersection. To address this knowledge limitation, this article reviews experiences in transboundary water treaties oriented toward different water sources, in order to: (i) understand how transboundary water institutions vary according to the water source to which they are oriented, (ii) gauge the nature and strength of conjunctive transboundary water management treaties, and (iii) identify ways to enhance conjunctive water management in transboundary contexts. The results reveal the existence of more than 50 treaties that make mention of both water sources. Nonetheless, only eight treaties devote ‘substantive’ focus to both surface and groundwater. Review of treaty contents reveals that their focus is on ‘softer’ issues related to institutional development. Moving forward, the reality that the evolution of conjunctive treaties is relatively nascent, and that scope of such treaties is still limited to institutional issues, may indicate large untapped potential – it may be time to outline pathways toward practical implementation of conjunctive water management in transboundary contexts.

Water Policy ◽  
2003 ◽  
Vol 5 (4) ◽  
pp. 331-348 ◽  
Author(s):  
Tanya Heikkila

This paper considers how water rights laws can shape the ways water providers coordinate when devising conjunctive water management programs. Conjunctive water management is a particularly useful tool for analyzing water management coordination because it involves certain physical and organizational complexities that may facilitate the need for coordination. It takes advantage of the natural storage capacity of underground aquifers for the storage of surface supplies during high flow seasons, allowing for recovery of those supplies when surface flows are limited. This paper compares conjunctive management programs across Arizona, California and Colorado. It identifies the distinct types of coordination associated with conjunctive water management programs across these states and shows that these forms of coordination depend upon the larger institutional setting governing rights to water resources.


Author(s):  
Alexey Shcherbakov ◽  
Valentin Zhezmer

Department of hydraulic engineering and hydraulics FGBNU «VNIIGiM them. A.N. Kostyakova «has a long history. For many years, the department’s staff has been such scientists and water engineers with extensive experience as M.A. Volynov, V.S. Verbitsky, S.S. Medvedev, N.V. Lebedev, B.C. Panfilov, T.G. Voynich-Syanozhentsky, V.A. Golubkova, G.V. Lyapin and others. The department solved a wide range of tasks, the main areas of research were the following: – theoretical and applied hydrodynamics and hydraulics, with reference to the open channel flows that affect the state and level of safety of the hydraulic structures; – integrated use and protection of water bodies – water sources and water sources of water resources used in land reclamation; – development of measures and technical solutions for the protection of objects from the negative effects of water; – theoretical substantiation of works to improve the safety level of the GTS (declaration); – development and implementation of digitalization methods for solving design, construction, operation and control of landreclamation facilities. Currently, promising areas of research is the development of a decision-making algorithm in the designation of measures to rationalize the provision of resources to water amelioration. The algorithm is developed on the basis of a detailed study, systematization and processing of data both on safety and on the efficiency of systems and structures, ensuring the delivery of irrigation water of the required quality and in sufficient quantity from a water source to the field.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2791
Author(s):  
Pengyan Su ◽  
Mingjun Zhang ◽  
Deye Qu ◽  
Jiaxin Wang ◽  
Yu Zhang ◽  
...  

As a species for ecological restoration in northern China, Tamarix ramosissima plays an important role in river protection, flood control, regional climate regulation, and landscape construction with vegetation. Two sampling sites were selected in the hillside and floodplain habitats along the Lanzhou City, and the xylems of T. ramosissima and potential water sources were collected, respectively. The Bayesian mixture model (MixSIAR) and soil water excess (SW-excess) were applied to analyze the relationship on different water pools and the utilization ratios of T. ramosissima to potential water sources in two habitats. The results showed that the slope and intercept of local meteoric water line (LMWL) in two habitats were smaller compared with the global meteoric water line (GMWL), which indicated the existence of drier climate and strong evaporation in the study area, especially in the hillside habitat. Except for the three months in hillside, the SW-excess of T. ramosissima were negative, which indicated that xylems of T. ramosissima are more depleted in δ2H than the soil water line. In growing seasons, the main water source in hillside habitat was deep soil water (80~150 cm) and the utilization ratio was 63 ± 17% for T. ramosissima, while the main water source in floodplain habitat was shallow soil water (0~30 cm), with a utilization ratio of 42.6 ± 19.2%, and the water sources were different in diverse months. T. ramosissima has a certain adaptation mechanism and water-use strategies in two habitats, and also an altered water uptake pattern in acquiring the more stable water. This study will provide a theoretical basis for plant water management in ecological environment protection in the Loess Plateau.


1994 ◽  
Vol 5 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Vernon L. Scarborough ◽  
Robert P. Connolly ◽  
Steven P. Ross

AbstractThe southern Lowland Maya hilltop center of Kinal is shown to be a human-modified watershed. The broad paved surfaces of the elevated central precinct acted as runoff-catchment areas directing precipitation into gravity-fed channels and reservoirs. In a geographical zone affected by an extended dry season and away from permanent water sources, Kinal demonstrates the components of a rainfall-dependent water-management system characteristic of other large sites in the region.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1513
Author(s):  
Yar M. Taraky ◽  
Yongbo Liu ◽  
Ed McBean ◽  
Prasad Daggupati ◽  
Bahram Gharabaghi

The Kabul River, while having its origin in Afghanistan, has a primary tributary, the Konar River, which originates in Pakistan and enters Afghanistan near Barikot-Arandu. The Kabul River then re-enters Pakistan near Laalpur, Afghanistan making it a true transboundary river. The catastrophic flood events due to major snowmelt events in the Hindu Kush mountains occur every other year, inundating many major urban centers. This study investigates the flood risk under 30 climate and dam management scenarios to assess opportunities for transboundary water management strategy in the Kabul River Basin (KRB). The Soil and Water Assessment Tool (SWAT) is a watershed-scale hydraulic modeling tool that was employed to forecast peak flows to characterize flood inundation areas using the river flood routing modelling tool Hydrologic Engineering Center - River Analysis System -HEC-RAS for the Nowshera region. This study shows how integrated transboundary water management in the KRB can play a vital catalyst role with significant socio-economic benefits for both nations. The study proposes a KRB-specific agreement, where flood risk management is a significant driver that can bring both countries to work together under the Equitable Water Resource Utilization Doctrine to save lives in both Afghanistan and Pakistan. The findings show that flood mitigation relying on collaborative efforts for both upstream and downstream riparian states is highly desirable.


Sign in / Sign up

Export Citation Format

Share Document