A Mathematical Model of Evaporation and Dissolution From Oil Spills on Ice, Land, Water and Under Ice

1975 ◽  
Vol 10 (1) ◽  
pp. 132-141 ◽  
Author(s):  
P.J. Leinonen ◽  
D. Mackay

Abstract Mathematical models are presented which quantify the processes of evaporation and dissolution of components of crude oil in three situations: a spill on water, a spill on ice, and a spill under ice cover in which the oil lies between the water and ice phases. Constant spill area is assumed. The evaporation flux is calculated using a mass transfer coefficient based on windspeed and spill dimensions. The dissolution flux can be calculated from two models, a mass transfer coefficient approach and an eddy diffusivity approach involving the integration of a set of partial differential equations in depth and time. The selection of model parameters is discussed. For the three physical situations, using a synthetic crude oil, results are presented giving the relative rates of evaporation and dissolution and the aqueous phase concentration of selected hydrocarbons. The implications of the results for clean-up technology and aquatic toxicity are discussed, particularly with regard to spills under ice.

2021 ◽  
Vol 7 (1) ◽  
pp. 25
Author(s):  
Pao-Chi Chen ◽  
Hsun-Huang Cho ◽  
Jyun-Hong Jhuang ◽  
Cheng-Hao Ku

In order to select the best mixed amines in the CO2 capture process, the absorption of CO2 in mixed amines was explored at the required concentrations by using monoethanolamine (MEA) as a basic solvent, mixed with diisopropanolamine (DIPA), triethanolamine (TEA), 2-amino-2-methyl-1-propanol (AMP), and piperazine (PZ). Here, a bubble column was used as the scrubber, and a continuous operation was adopted. The Taguchi method was used for the experimental design. The conditional factors included the type of mixed amine (A), the ratio of the mixed amines (B), the liquid feed flow (C), the gas-flow rate (D), and the concentration of mixed amines (E). There were four levels, respectively, and a total of 16 experiments. The absorption efficiency (EF), absorption rate (RA), overall mass transfer coefficient (KGa), and scrubbing factor (ϕ) were used as indicators and were determined in a steady-state by the mass balance and two-film models. According to the Taguchi analysis, the importance of the parameters and the optimum conditions were obtained. In terms of the absorption efficiency (EF), the absorption rate (absorption factor) (RA/ϕ), and the overall mass transfer coefficient (KGa), the order of importance is D > E > A > B > C, D > E > C > B > A, and D > E > C > A > B, respectively, and the optimum conditions are A1B4C4D3E3, A1B3C4D4E2, A4B2C3D4E4, and A1B1C1D4E1. The optimum condition validation results showed that the optimal values of EF, RA, and KGa are 100%, 30.69 × 10−4 mol/s·L, 1.540 l/s, and 0.269, respectively. With regard to the selection of mixed amine, it was found that the mixed amine (MEA + AMP) performed the best in the CO2 capture process.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 846
Author(s):  
Leone Mazzeo ◽  
Antonella Signorini ◽  
Giuseppe Lembo ◽  
Irene Bavasso ◽  
Luca Di Palma ◽  
...  

In situ Bio-Methanation (BM) is a recently developed biogas upgrading technique which finds application also in the Power to Gas (P2G) field. In this study a novel configuration of BM digester, the randomly packed Gas Stirred Tank Reactor (GSTR), was modelled. A 49 L reactor, in thermophilic conditions (55 °C) and at atmospheric pressure, was filled up with random packing on which the microbial populations could adhere. The feedstock used was Second Cheese Whey (SCW), liquid waste of cheese factories, rich in lactose (38 g/L), and its flowrate was chosen to obtain a Hydraulic Retention Time (HRT) of 30 days. The process was analyzed for different hydrogen inlet flowrates of 10 mL/min and 50 mL/min. The produced biogas was also recirculated in the reactor in order to transfer, into the liquid phase, as much hydrogen as possible. The model parameters were estimated by means of stationary state information of the reactor working without hydrogen injection, while a dynamical fitting was necessary to evaluate the value of the hydrogen mass transfer coefficient during BM. The model well described the reactor behavior and, by means of a dimensionless analysis in which the numbers of Stanton (St) and β were defined, it was found out that the mass transfer coefficient is the limiting step of the process.


1986 ◽  
Vol 51 (10) ◽  
pp. 2127-2134 ◽  
Author(s):  
František Potůček ◽  
Jiří Stejskal

Absorption of oxygen into water and aqueous solutions of poly(acrylamides) was studied in an absorber with a wetted sphere. The effects of changes in the liquid flow rate and the polymer concentration on the liquid side mass transfer coefficient were examined. The results are expressed by correlations between dimensionless criteria modified for non-Newtonian liquids whose flow curve can be described by the Ostwald-de Waele model.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Sher Ahmad ◽  
Gabriela Vollet Marson ◽  
Waheed Ur Rehman ◽  
Mohammad Younas ◽  
Sarah Farrukh ◽  
...  

Abstract Background In this research work, a coupled heat and mass transfer model was developed for salt recovery from concentrated brine water through an osmotic membrane distillation (OMD) process in a hollow fiber membrane contactor (HFMC).The model was built based on the resistance-in-series concept for water transport across the hydrophobic membrane. The model was adopted to incorporate the effects of polarization layers such as temperature and concentration polarization, as well as viscosity changes during concentration. Results The modeling equations were numerically simulated in MATLAB® and were successfully validated with experimental data from literature with a deviation within the range of 1–5%. The model was then applied to study the effects of key process parameters like feed concentrations, osmotic solution concentration, feed, and osmotic solution flow rates and feed temperature on the overall heat and mass transfer coefficient as well as on water transport flux to improve the process efficiency. The mass balance modeling was applied to calculate the membrane area based on the simulated mass transfer coefficient. Finally, a scale-up for the MD process for salt recovery on an industrial scale was proposed. Conclusions This study highlights the effect of key parameters for salt recovery from wastewater using the membrane distillation process. Further, the applicability of the OMD process for salt recovery on large scale was investigated. Sensitivity analysis was performed to identify the key parameters. From the results of this study, it is concluded that the OMD process can be promising in salt recovery from wastewater.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4329
Author(s):  
Radek Šulc ◽  
Jan Dymák

The gas–liquid hydrodynamics and mass transfer were studied in a concentric tube internal jet-loop airlift reactor with a conical bottom. Comparing with a standard design, the gas separator was equipped with an adjustable deflector placed above the riser. The effect of riser superficial gas velocity uSGR on the total gas holdup εGT, homogenization time tH, and overall volumetric liquid-phase mass transfer coefficient kLa was investigated in a laboratory bioreactor, of 300 mm in inner diameter, in a two-phase air–water system and three-phase air–water–PVC–particle system with the volumetric solid fraction of 1% for various deflector clearances. The airlift was operated in the range of riser superficial gas velocity from 0.011 to 0.045 m/s. For the gas–liquid system, when reducing the deflector clearance, the total gas holdup decreased, the homogenization time increased twice compared to the highest deflector clearance tested, and the overall volumetric mass transfer coefficient slightly increased by 10–17%. The presence of a solid phase shortened the homogenization time, especially for lower uSGR and deflector clearance, and reduced the mass transfer coefficient by 15–35%. Compared to the gas–liquid system, the noticeable effect of deflector clearance was found for the kLa coefficient, which was found approx. 20–29% higher for the lowest tested deflector clearance.


Sign in / Sign up

Export Citation Format

Share Document