scholarly journals Removing free-floating oil from water using cationic polymers/surfactant-modified silica

Author(s):  
Anucha Ruksanti ◽  
Sorapong Janhom

Abstract The purpose of this work was to evaluate the efficiency of oil sorption of silica particles modified by three different types of cationic polymers and a cationic surfactant. Low-molecular-weight polyethyleneimine (LPEI), high-molecular-weight polyethyleneimine (HPEI), polydiallyldimethylammonium chloride (PDM), and cetyltrimethylammonium bromide (CTAB) were used to modify the silica particles and then compared their performances for oil removal. The scanning electron microscope and zeta potential measurements were used to analyze the surface characteristics of unmodified and modified silica particles. Adsorptions of motor oil and palm oil on the modified silica particles have been investigated under various parameters such as the silica particle size, the oil concentration, the polymer/surfactant concentrations, and the pH. The results have shown that the modified silica particles enhanced the oil sorption ability by approximately 10–20 times depending on the size of silica particles, pH, and the type of polymer/surfactant used when compared with the unmodified silica particles. The highest palm oil adsorption values of LPEI-silica, HPEI-silica, PDM-silica, CTAB-silica, and unmodified silica were 2.40, 2.10, 1.95, 1.50, and 0.15 g/gsilica, respectively. Moreover, the oil sorption of the modified silica particles was increased by approximately 30–50% for the smallest-sized silica particles.

Soft Matter ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Ben A. Humphreys ◽  
Stuart W. Prescott ◽  
Timothy J. Murdoch ◽  
Andrew Nelson ◽  
Elliot P. Gilbert ◽  
...  

The internal structure of PNIPAM brush modified silica particles has been probed as a function of temperature and molecular weight.


1991 ◽  
Vol 69 (10) ◽  
pp. 1516-1519
Author(s):  
Truis Smith-Palmer ◽  
Cheryl Roberts

The tensammograms of several sets of cationic polyacrylamide copolymers are discussed and compared. Tensammograms are not affected by molecular weight, but plots of capacitive current at a chosen potential versus charge density give regular curves. Key words: tensammetry, cationic, polyacrylamide, charge density.


2014 ◽  
Vol 54 (11) ◽  
pp. 3044-3053 ◽  
Author(s):  
M.A. Abdullah ◽  
M. Afzaal ◽  
Z. Ismail ◽  
A. Ahmad ◽  
M.S. Nazir ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 27-36
Author(s):  
V. V. Mykhaliuk ◽  
◽  
V. V. Havryliak ◽  

Background. Keratins are natural biopolymers with a wide range of applications in the field of biotechnology. Materials and Methods. Extraction of keratins was performed by a modified Nakamura method using 250 mM DTT. The protein concentration in the supernatant was determined by Bradford method. The protein composition was studied by their electro­phoretic separation in a polyacrylamide gel in the presence of sodium dodecyl sulfate. The films were made by casting. The surface characteristics of the films were determined using a scanning electron microscope REMMA-102. The elemental composition of the films was determined using an X-ray microanalyzer. Results. The protein concentration in the supernatant was 3.75 mg/mL. After using dithiothreitol in the extraction mixture, we obtained proteins of intermediate filaments with a molecular weight of 40–60 kDa and a low Sulfur content. In the low molecular weight region, we obtained keratin-associated proteins with a molecular weight of 10–30 kDa and a high content of Sulfur. These proteins belong to fibrillar proteins, which can be used as a matrix for the creation of new keratin-containing biocomposites with a wide range of applications in reparative medicine and tissue engineering. Based on the obtained keratin extract, polymer films with and without the addition of glycerol were made. Scanning electron microscopy revealed that glycerol provided the film structure with homogeneity and plasticity due to the accumulation of moisture after the fixation by water vapor. The X-ray microanalysis of films revealed such elements as Sodium, Silicon, Sulfur, Potassium. Among the detected elements, Sulfur has the largest share that is due to the large number of disulfide bonds in the keratin molecule. Conclusions. The polymer keratin films with the addition of glycerol demonstrated better mechanical properties and can be used in biomedicine.


2018 ◽  
Vol 461 ◽  
pp. 260-268 ◽  
Author(s):  
K. Wysocka-Król ◽  
S. Olsztyńska-Janus ◽  
G. Plesch ◽  
A. Plecenik ◽  
H. Podbielska ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 640 ◽  
Author(s):  
Richard Hrčka ◽  
Viera Kučerová ◽  
Tatiana Hýrošová ◽  
Vladimír Hönig

The interaction of water and oak wood is common in outdoor expositions and will remain a probable occurrence in the future. New insights into the recognition of a cell wall saturation limit are presented by a double-weighing method at 20 °C. The cell wall saturation limit, as the property of thermally modified oak wood, is significantly influenced by different treatment temperatures (20, 160, 180, 210 and 240 °C) on a 5% alpha level. A significantly higher equilibrium moisture content was reached by thermally modified oak wood at a temperature of 20 °C and relative humidity of 65% after its equilibrium in the water-in-reservoir. Moreover, the results are used in the treatment of woodchips to produce cellulose or decomposition of thermally modified wood to its basic chemical components. The investigated properties of cellulose revealed its relationship with water. The number of water molecules bonded to a cellulose chain was correlated with other measured compositions: average molecular weight, total crystalline index, lateral order index and polydispersity index. Analyses showed that there was a strong negative correlation between lateral order index and average molecular weight. The same was true between total crystalline index and average molecular weight. The rest of the properties were positively correlated with the number of water molecules bonded to glucopyranose. The results revealed the possible regeneration of a wood sorption ability after heat treatment and the stability of cellulose in such process.


Soft Matter ◽  
2019 ◽  
Vol 15 (37) ◽  
pp. 7374-7380 ◽  
Author(s):  
Youfa Zhang ◽  
Zhen Xiao ◽  
Chengzhi Liu ◽  
Xinquan Yu

Superamphiphobic coatings are fabricated via electrostatic dusting using modified silica particles and polymethyl methacrylate resin particles on conductive substrates (metal and conductive glass).


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1432
Author(s):  
Laure Lichon ◽  
Clément Kotras ◽  
Bauyrzhan Myrzakhmetov ◽  
Philippe Arnoux ◽  
Morgane Daurat ◽  
...  

In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media. These polymers are also fluorescent, allowing one to visualize their intracellular location through confocal microscopy. The most promising polymers were then used as vectors for siRNA delivery. Due to their cationic and amphipathic features, these polymers were found to effectively self-assemble with siRNA targeting the luciferase gene and deliver it in MDA-MB-231 cancer cells expressing luciferase, leading to 30–50% of the gene-silencing effect. In parallel, the photodynamic therapy (PDT) activity of these cationic polymers was restored after siRNA delivery, demonstrating their potential for combined PDT and gene therapy.


Author(s):  
Basir Ahmed ◽  
Nadia Suhaila Muhammad Asyraf Anbalagan ◽  
Mohammad Dalour Hossen Beg ◽  
Rosli Yunus ◽  
Arman Abdullah

Sign in / Sign up

Export Citation Format

Share Document