Determination of mass transport characteristics for natural organic matter (NOM) in ultrafiltration (UF) and nanofiltration (NF) membranes

2002 ◽  
Vol 2 (2) ◽  
pp. 151-160 ◽  
Author(s):  
S. Lee ◽  
Y. Shim ◽  
In S. Kim ◽  
J. Sohn ◽  
S.K. Yim ◽  
...  

This study is mainly concerned with establishing a reliable method of the quantitative analysis of natural organic matter (NOM) transport characteristics through ultrafiltration (UF) and nanofiltration (NF) membranes with molecular weight cutoffs of 8000 (GM) and 250 (ESNA), respectively. Filtrations were conducted with a cross-flow filtration unit and hydrodynamic operating conditions were controlled by a J0/k ratio (the ratio of initial permeate flux [J0] to a back diffusional mass transfer coefficient [k]). A four-parameter (the apparent mass transfer coefficient [ka], the solute concentration near the membrane surface [Cm], the solute permeability [Pm], and the reflection coefficient (σ) model based on concentration polarization and irreversible thermodynamics was used to manipulate experimental results quantitatively. With the values of the determined parameters, the transport characteristics of NOM due to different solution chemistries such as pH and ionic strength through UF/NF membrane pores were investigated. This model was also used to demonstrate the effects of NOM structure (hydrophobic/transphilic/hydrophilic) on transport through the membranes, with XAD-8/4 resins fractionation and isolation procedures. Four parameters estimated through the model were revealed to be relevant to elucidate the behaviors of NOM in membranes and corresponding transport-related results were in good agreement with the theoretical descriptions related to the interactions between NOM molecules and membrane surface/pores.

1999 ◽  
Vol 40 (9) ◽  
pp. 131-139 ◽  
Author(s):  
Gary Amy ◽  
Jaeweon Cho

This work demonstrates that interactions between membranes and natural organic matter (NOM) include rejection by both steric and electrostatic exclusion, and fouling by adsorption. NOM rejection and fouling are influenced by both NOM characteristics (molecular weight, aromaticity/humic content, and charge) and membrane properties (molecular weight cutoff (MWCO), hydrophobicity, and charge) as well as hydrodynamic operating conditions represented by a f/k ratio (the ratio of permeate flux (f) to a diffusional back-transport mass transfer coefficient (k)).


2019 ◽  
Vol 41 (5) ◽  
pp. 820-820
Author(s):  
Pongayi Ponnusamy Selvi and Rajoo Baskar Pongayi Ponnusamy Selvi and Rajoo Baskar

The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.


2015 ◽  
Vol 69 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Milica Djekovic-Sevic ◽  
Nevenka Boskovic-Vragolovic ◽  
Ljiljana Takic ◽  
Radmila Garic-Grulovic ◽  
Srdjan Pejanovic

Experimental investigation of gas-liquid mass transfer of ozone in water, in bubble column with two-fluid nozzle gas distributor (BKDM), under different operating conditions, are presented in this work. The main objective was to determine the ozone volumetric mass transfer coefficient, kL a, in calm uniform section of the column, under different values of gas and liquid flow rates. Obtained values of these coefficients were compared with the values in countercurrent bubble column. The critical liquid flowrate, when gas hold up reaches its maximum, was experimentally determined. It was shown that the maximum value of the ozone volumetric mass transfer coefficient is obtained just when liquid flowrate is at its critical value.


2015 ◽  
Vol 31 (4) ◽  
Author(s):  
Reza Afshar Ghotli ◽  
Abdul Raman Abdul Aziz ◽  
Shaliza Ibrahim

AbstractA general review on correlations to evaluate mass transfer coefficients in liquid-liquid was conducted in this work. The mass transfer models can be classified into continuous and dispersed phase coefficients. The effects of drop size and interfacial area on mass transfer coefficient were investigated briefly. Published experimental results for both continuous and dispersed phase mass transfer coefficients through different hydrodynamic conditions were considered and the results were compared. The suitability and drawbacks of these correlations depend on the operating conditions and hydrodynamics. Although the results of these models are reasonably acceptable, they could not properly predict the experimental results over a wide range of designs and operating conditions. Therefore, proper understanding of various factors affecting mass transfer coefficient needs to be further extended.


Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 156 ◽  
Author(s):  
Éric Dumont

The Effectiveness-Number of Transfer Unit method (ε-NTU method) was applied to determine the overall mass transfer coefficient, KLa, of operating gas-liquid absorbers treating Volatile Organic Compounds (VOCs). This method requires the knowledge of the operating conditions (gas flow rate, QG; liquid flow rate, QL; scrubber volume V), the measurement of gaseous concentrations at the inlet, CGin, and at the outlet, CGout, of the contactor (in order to determine the effectiveness of the absorber ε) and the calculation of the Henry coefficient of the VOC between the gas and the liquid phases (HVOC). Coupled with the “equivalent absorption capacity” concept, the ε-NTU method was used to determine KLa of absorbers contacting a gas and a mixture of water and a Non Aqueous Phase, successfully. The method, validated from literature data for configurations countercurrent scrubbers and stirred tank reactors, could be used to simply determine the overall mass transfer coefficient of systems for which the standard KLa determination methods still remain non-reliable or inaccurate (viscous solvents, mixture of immiscible liquids, fermentation broths…).


Author(s):  
Mehdi Sattari-Najafabadi ◽  
Bengt Sundén ◽  
Zan Wu ◽  
Mohsen Nasr Esfahany

The influences of operating conditions and physical properties of the two phases on the hydrodynamics and mass transfer in a circular liquid-liquid microchannel have been investigated. The polytetrafluoroethylene (PTFE) microchannel has an internal diameter of 0.7 mm and a T-shaped mixing junction. Sodium hydroxide solution was used as the aqueous phase. N-hexane and toluene were employed as the organic phases to investigate the effect of physical properties. Regarding the results, at constant total flow rate, raising the flow rate ratio enhanced the overall volumetric mass transfer coefficient. Using toluene as the organic solvent enhanced the overall volumetric mass transfer coefficient in average by 64.7% and 100.27% comparing to n-hexane-water at flow rate ratio of 1 and 0.5, respectively. This increment resulted in a decrement in the required mass transfer time and length in the microchannel. The length of the slugs had no considerable variation as n-hexane was replaced with toluene. Thus, the significant improvement of the overall volumetric mass transfer coefficient was because of the increment of the overall mass transfer coefficient, not the specific interfacial area.


2007 ◽  
Vol 72 (8-9) ◽  
pp. 847-855 ◽  
Author(s):  
Ljiljana Takic ◽  
Vlada Veljkovic ◽  
Miodrag Lazic ◽  
Srdjan Pejanovic

Ozone absorption in water was investigated in a mechanically stirred reactor, using both the semi-batch and continuous mode of operation. A model for the precise determination of the volumetric mass transfer coefficient in open tanks without the necessity of the measurement the ozone concentration in the outlet gas was developed. It was found that slow ozone reactions in the liquid phase, including the decomposition of ozone, can be regarded as one pseudo-first order reaction. Under the examined operating conditions, the liquid phase was completely mixed, while mixing in a gas phase can be described as plug flow. The volumetric mass transfer coefficient was found to vary with the square of the impeller speed. .


Author(s):  
Haider Ali ◽  
Sofia Zhu ◽  
Jannike Solsvik

Abstract Scaling up stirred tanks is a significant challenge because of the research gaps between laboratory and industrial-scale setups. It is necessary to understand the effects of scale-up on the mass transfer in stirred tanks, and this requires meticulous experimental analysis. The present study investigates the effects of tank size and aspect ratio ( H L T ${H}_{L}}{T}$ ) on the volumetric mass transfer coefficients of shear-thinning fluids. The experiments were conducted in three stirred tanks of different sizes (laboratory and pilot scale) and geometries (standard and nonstandard). H L T ${H}_{L}}{T}$ was 1 for the standard tanks and 3.5 for the nonstandard stirred tanks. Three sizes of stirred tanks were used: 11 L with H L T ${H}_{L}}{T}$ of 1, 40 L with H L T ${H}_{L}}{T}$ of 3.5, and 47 L with H L T ${H}_{L}}{T}$ of 1. Impeller stirring speeds and gas flow rates were in the range of 800–900 rev min−1 and 8–10 L min−1, respectively. The volumetric mass transfer coefficient was estimated based on the dissolved oxygen concentration in the fluids, and the effects of rheology and operating conditions on the volumetric mass transfer coefficient were observed. The volumetric mass transfer coefficient decreased as tank size increased and increased with an increase in operating conditions, but these effects were also clearly influenced by fluid rheology. The impacts of scale-up and operating conditions on the volumetric mass transfer coefficient decreased as liquid viscosity increased.


2018 ◽  
Vol 8 (11) ◽  
pp. 2041 ◽  
Author(s):  
Pao Chi Chen ◽  
Sheng-Zhong Lin

This study used sodium glycinate as an absorbent to absorb CO2 in the bubble column scrubber under constant pH and temperature environments to obtain the operating range, CO2 loading, and mass transfer coefficient. For efficient experimentation, the Taguchi method is used for the experimental design. The process parameters are the pH, gas flow rate (Qg), liquid temperature (T), and absorbent concentration (CL). The effects of the parameters on the absorption efficiency, absorption rate, overall mass transfer coefficient, gas–liquid molar flow rate ratio, CO2 loading, and absorption factor are to be explored. The optimum operating conditions and the order of parameter importance are obtained using the signal/noise (S/N) ratio analysis, and the optimum operating conditions are further verified. The verification of the optimum values was also carried out. The order of parameter importance is pH > CL > Qg > T. Evidence in the 13CNMR (Carbon 13 Nuclear Magnetic Resonance) spectra shows that the pH value has an effect on the solution composition, which affects both the absorption efficiency and mass transfer coefficient. There are 18 experiments for regeneration, where the operating temperature is 100–120 °C. The heat of regeneration was measured according to the thermodynamic data. The CO2 loading, the overall mass transfer, and the heats of regeneration correlation are also discussed in this work. Finally, an operating policy for the CO2 absorption process was confirmed.


Sign in / Sign up

Export Citation Format

Share Document