scholarly journals Mixed electron donor autotrophic denitrification processes for groundwater treatment by immobilized biological filters

2017 ◽  
Vol 17 (6) ◽  
pp. 1673-1681 ◽  
Author(s):  
Jun-feng Su ◽  
Dong-hui Liang ◽  
Ting-lin Huang ◽  
Ting-ting Lian ◽  
Wen-dong Wang

Abstract An immobilized biological filter (IBF) using Fe(II) and Mn(II) as mixed electron donors was evaluated for nitrate removal in groundwater. Results of the single factor experiments of strain SZ28 under the conditions of electron donor:electron acceptor ratio (1:2, 1.45:1, 3:1), Fe(II):Mn(II) ratio (1:9, 3:7, 5:5) demonstrated that the highest nitrate removal ratio was 100%, 49.6% (Mn(II)) and 100% (Fe(II)) under the conditions of electron donor:electron acceptor ratio of 3:1, Fe(II):Mn(II) ratio of 5:5. Mn(II) and Fe(II) as electron donor was tested for the effects on denitrification in the IBF reactor. Optimal conditions were obtained at an electron donor:electron acceptor ratio of 2:1, hydraulic retention time of 12 h and Fe(II):Mn(II) ratio of 5:5 with the highest removal ratio of nitrate-N (100%), Mn(II) (50.25%) and Fe(II) (99.2%). Results suggest that the optimal condition obtained from the IBF was feasible.

2016 ◽  
Vol 74 (5) ◽  
pp. 1185-1192 ◽  
Author(s):  
Jun-feng Su ◽  
Jing-xin Shi ◽  
Ting-lin Huang ◽  
Fang Ma ◽  
Jin-suo Lu ◽  
...  

The role of electron donors (Fe2+ and Mn2+) in the autotrophic denitrification of contaminated groundwater by bacterial strain SY6 was characterized based on empirical laboratory-scale analysis. Strain SY6 can utilize Fe2+ more efficiently than Mn2+ as an electron donor. This study has shown that the highest nitrate removal ratio, observed with Fe2+ as the electron donor, was approximately 88.89%. An immobilized biological filter reactor was tested by using three levels of influent nitrate (10, 30, and 50 mg/L), three pH levels (6, 7, and 8), and three levels of hydraulic retention time (HRT; 6, 8, and 12 h), respectively. An optimal nitrate removal ratio of about 95% was achieved at pH 6.0 using a nitrate concentration of 50 mg/L and HRT of 12 h with Fe2+ as an electron donor. The study showed that 90% of Fe2+ and 75.52% removal of Mn2+ were achieved at pH 8.0 with a nitrate concentration of 50 mg/L and a HRT of 12 h. Removal ratio of Fe2+ and Mn2+ is higher with higher influent nitrate and HRT. A weakly alkaline environment assisted the removal of Fe2+ and Mn2+.


2018 ◽  
Vol 19 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Xianxin Luo ◽  
Junfeng Su ◽  
Han Liu ◽  
Tinglin Huang ◽  
Li Wei ◽  
...  

Abstract A moving bed biofilm reactor (MBBR) using Mn(II) and Fe(II) as mixed electron donors was designed for nitrate removal. The optimal state, as determined by response surface methodology, was an Fe(II):Mn(II) molar ratio of 0.62, electron donor:electron acceptor molar ratio of 2.62 and hydraulic retention time of 10.88 h. Subsequently, the MBBR was applied to groundwater treatment and demonstrated a final nitrate-N removal efficiency of 99.5% with a nitrite-N accumulation rate of 0.0706 mg-N·L−1·h−1. Furthermore, high-throughput sequencing was employed to characterize bacterial communities in the MBBR. Results showed that the genera of Pseudomonas and Acinetobacter may make a contribution to the nitrate removal.


Author(s):  
Natalia Jakus ◽  
Nia Blackwell ◽  
Karsten Osenbrück ◽  
Daniel Straub ◽  
James M. Byrne ◽  
...  

Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer and as such there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic co-substrates for growth, within 7-11 days 0.3-0.5 mM of nitrate was reduced and 1.3-2 mM of iron(II) was oxidized leading to a stoichiometric NO 3 - /Fe(II) ratio of 0.2, with N 2 and N 2 O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, microaerophilic iron(II)-oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically impacted aquifers. Importance Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment and as such there are no model cultures available to study the rate-limiting factors of this potentially important process. Here we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II)-oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N 2 O and N 2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 337-342 ◽  
Author(s):  
R. Sierra-Alvarez ◽  
F. Guerrero ◽  
P. Rowlette ◽  
S. Freeman ◽  
J.A. Field

This study investigated removal of sulfide and p-cresol linked to denitrification in laboratory-scale upflow anaerobic granular sludge bed (UASB) bioreactors. Three parallel denitrification bioreactors were run for nine months, which were operated under chemolithoautotrophic conditions (i.e., using sulfide as electron donor –e-donor- and bicarbonate as C source); heterotrophic conditions (with p-cresol as e-donor and C source), and mixotrophic conditions (utilizing both sulfide and p-cresol as electron donors), respectively. The average hydraulic retention time and nitrate load applied to the bioreactors was 13.4 h and 1,240 mg N-NO3/l/day, respectively. The nitrate removal efficiency was 89, 95 and 99%, respectively, for the chemo-, hetero- and mixotrophic reactors. The mixotrophic UASB removed both sulfide and p-cresol almost completely, indicating that simultaneous removal of the inorganic and organic e-donors occurred. Nitrite was seldom observed as an intermediate. N2O gas and methane concentrations in the biogas were also negligible. These results indicate that mixotrophic denitrification with phenols and sulfide is feasible in high rate UASB reactors.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 487-492 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternating anaerobic/aerobic conditions was tested to remove nutrient as well as organics from wastewater generated from car-washing facility. The wastewater was characterized by relatively low organic and high phosphorus content. The factors affecting phosphorus removal in the two-biofilter system were investigated. Operational parameters examined in this study were hydraulic retention time, organic, suspended solid and nitrogen loading rate. The factors affecting phosphorus removal in biological filter appeared to be influent COD, COD/T–P, BOD/COD, nitrogen, and SS/T–P. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The biomass wasted during backwash procedure also affected total phosphorus removal by the system.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.


2013 ◽  
Vol 295-298 ◽  
pp. 1402-1407
Author(s):  
Rui Wang ◽  
Ming Chen ◽  
Jia Wen Zhang ◽  
Fei Liu ◽  
Hong Han Chen

Effects of different electron donors (acetate and hydrogen), acetate and perchlorate concentrations on microbial perchlorate reduction in groundwater were studied. The results showed that acetate and hydrogen addition as an electron donor can significantly improve perchlorate removal efficiency while a longer period was observed for hydrogen (15 d) than for acetate (8 d). The optical ratio of electron donor (acetate)-to-electron acceptor (perchlorate) was approximately 1.65 mg COD mg perchlorate-1. The highest specific reduction rate of perchlorate was achieved at the acetate-to-perchlorate ratio of 3.80 mg COD mg perchlorate-1. The perchlorate reduction rates corresponded well to the theoretical values calculated by the Monod equation and the parameters of Ks and Vm were determined to be 15.6 mg L-1 and 0.26 d-1, respectively.


2017 ◽  
Vol 198 ◽  
pp. 397-407 ◽  
Author(s):  
Tomoaki Takayama ◽  
Ko Sato ◽  
Takehiro Fujimura ◽  
Yuki Kojima ◽  
Akihide Iwase ◽  
...  

CuGaS2, (AgInS2)x–(ZnS)2−2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9–(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO–TiO2 composite) were only dispersed in water under 1 atm of CO2.


2019 ◽  
Vol 233 (8) ◽  
pp. 1201-1214 ◽  
Author(s):  
Elaheh Tajari ◽  
Narges Samadani Langeroodi ◽  
Mahnaz Khalafi

Abstract This paper describes the adsorption of Mn2+ ions from water with a mixture of wheat bran and Japanese medlar core shell (weight ratio of 30–70 wheat bran to Japanese medlar core shell) as low-cost adsorbent. Scanning Electron Microscope was used to characterize the adsorbent. The response surface methodology (RSM) that is usually approximated by a second-order regression model was employed to evaluate the effects of solution pH, initial Mn2+ concentration, adsorbent weight and contact time on the removal ratio of the Mn2+ ions. In this regard, the significant variables initial Mn2+ ions concentration, pH, adsorbent weight and square pH were found based on the small P-value for the model coefficients. The predicted optimal conditions were also performed. In the process optimization, maximal value of the removal ratio of Mn2+ was achieved as 96.91%. Additionally, this paper discusses the kinetic of adsorption in optimal conditions.


Sign in / Sign up

Export Citation Format

Share Document