scholarly journals Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D

2019 ◽  
Vol 20 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Xie Haowen ◽  
Wu Yawen ◽  
Wang Luping ◽  
Luo Weilin ◽  
Zhou Wenqi ◽  
...  

Abstract Green roofs are a sustainable, low-impact development technique. They can reduce peak stormwater runoff and runoff volume and improve the quality of runoff from individual buildings and developments, which can lower the risk of frequent urban flooding and improve the quality of receiving waters. Few studies have compared different types of green roof models under the same rainfall intensities; thus, in this study, the predictions of a non-linear storage reservoirs model, Storm Water Management Model (SWMM), and a physical process model (HYDRUS-1D) were discussed. Both models were compared against measured data obtained from a series of laboratory experiments, designed to represent different storm categories and rainfall events. It was concluded that the total runoff of the SWMM model is always less than that of HYDRUS-1D. The maximum flowrate of the SWMM model is more than that of HYDRUS-1D during all events.

2018 ◽  
Vol 20 (3) ◽  
pp. 588-596 ◽  
Author(s):  
Aviva Gabriel Limos ◽  
Kristine Joy Bernardo Mallari ◽  
Jongrak Baek ◽  
Hwansuk Kim ◽  
Seungwan Hong ◽  
...  

Abstract Green roof is a low impact development (LID) practice used to mitigate imperviousness in urban areas and to reduce flood risks. In order to have sufficient designs and accurate runoff predictions, computer models should be utilized with full understanding of green roofs' hydrologic processes. Evapotranspiration is usually considered important by researchers in the water balance modeling of a green roof. The Storm Water Management Model (SWMM) version 5.1 is widely utilized rainfall-runoff modeling software which has LID controls capable of modeling green roofs. A previous study has evaluated the performance of this model in green roof simulations for single events without considering evapotranspiration in its application, but attained negative outcomes. Thus, the objective of this study is to determine the significance of considering evapotranspiration in producing accurate runoff simulations specifically using SWMM 5.1. The results of this study have shown that when evapotranspiration was not considered, simulations failed to agree with observed values, whereas when evapotranspiration was considered, simulated runoff volumes attained a very good fit with the observed runoff volumes proving the significance of evapotranspiration as an important parameter in green roof modeling.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 640 ◽  
Author(s):  
Ioannis M. Kourtis ◽  
Vassilios A. Tsihrintzis ◽  
Evangelos Baltas

The present work aims at quantifying the benefit of Low Impact Development (LID) practices in reducing peak runoff and runoff volume, and at comparing LID practices to conventional stormwater solutions. The hydrologic-hydraulic model used was the Storm Water Management Model (SWMM5.1). The LID practices modeled were: (i) Green roofs; and (ii) Permeable pavements. Each LID was tested independently and compared to two different conventional practices, i.e., sewer enlargement and detention pond design. Results showed that for small storm events LID practices are comparable to conventional measures, in reducing flooding. Overall, smaller storms should be included in the design process.


2018 ◽  
Vol 18 (9) ◽  
pp. 2525-2536 ◽  
Author(s):  
Jiansheng Wu ◽  
Rui Yang ◽  
Jing Song

Abstract. The increase in impervious surfaces associated with rapid urbanization is one of the main causes of urban inundation. Low-impact development (LID) practices have been studied for mitigation of urban inundation. This study used a hydrodynamic inundation model, coupling SWMM (Storm Water Management Model) and IFMS-Urban (Integrated Flood Modelling System–Urban), to assess the effectiveness of LID under different scenarios and at different hazard levels. The results showed that LID practices can effectively reduce urban inundation. The maximum inundation depth was reduced by 3 %–29 %, average inundation areas were reduced by 7 %–55 %, and average inundation time was reduced by 0 %–43 % under the eight scenarios. The effectiveness of LID practices differed for the three hazard levels, with better mitigation of urban inundation at a low hazard level than at a high hazard level. Permeable pavement (PP) mitigated urban inundation better than green roofs (GRs) under the different scenarios and at different hazard levels. We found that more implementation area with LID was not necessarily more efficient, and the scenario of 10 % PP+10 % GR was more efficient for the study area than other scenarios. The results of this study can be used by local governments to provide suggestions for urban inundation control, disaster reduction, and urban renewal.


2013 ◽  
Vol 68 (1) ◽  
pp. 36-42 ◽  
Author(s):  
E. Burszta-Adamiak ◽  
M. Mrowiec

Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.


Author(s):  
Maryam Hassan Mohammed ◽  
Haider M. Zwain ◽  
Waqed Hammed Hassan

Abstract This paper describes the application of the storm water management model (SWMM) for predicting the sewage quality in the sanitary sewer system of the study area resulting from the leaking of stormwater surface runoff to the system during rainfall events at different return periods. The concentrations of major pollutants were assessed in the sanitary sewer system at different rainfall intensities. Then, a solution to mitigate the problem was proposed using low impact development (LID) technology. The results of sensitivity analysis indicated that maximum build-up possible was the most sensitive parameter for model calibration. The model was calibrated using actual rainfall events, and statistical validation coefficients of R (0.81–0.82) and NMSE (0.0173–0.022) proved that the model is valid. The sewage quality assessment results showed that pollutants concentration increased to its maximum level at 20 min and gradually decreased to a slightly constant minimum value after 2 h. The proposed solution of LID reduced the pollutants concentrations by 82–88, 75–77, 52–55, and 7–10% for all pollutants at return periods of 2, 5, 10, and 25 years, respectively. To conclude, SWMM simulation successfully predicted the concentration of the pollutants, and leaking of stormwater surface runoff has changed the sewage quality.


10.29007/4rp8 ◽  
2018 ◽  
Author(s):  
Ingrid Russwurm ◽  
Birgitte Gissvold Johannessen ◽  
Ashenafi Gragne ◽  
Jardar Lohne ◽  
Tone Merete Muthanna

Green roofs (GRs) have become a popular sustainable drainage system (SuDS) technology in urban areas. As many countries and regions experience political encouragement and substitution schemes in implementing GRs, there is a need for reliant models that can support designing purposes. The stormwater management model’s (SWMM) Low Impact Development Green Roof (LID-GR) control is used to simulate the hydrological detention performance of two GRs, GR1 and GR2, with different drainage properties located in Oslo, Norway. This study uses event-based data to replicate GR runoff. Accordingly, four event-models were calibrated using the Shuffled Complex Evolution algorithm with the Nash-Sutcliffe criteria (NSE) as the objective function. Eight events were used for model validation. Simulation results revealed that SWMM’s LID module can capture response of the GRs even though the adequacy varies among events. During calibration two GR1 (0.55 and 0.72) and three GR2 (0.73, 0.88 and 0.51) event-models yielded NSE>0.5. However, only parameter sets of two GR2 event-models yielded NSE>0.5 when applied to the validation events. Parameter sensitivity analysis exhibited significant correlation between conductivity slope and maximum precipitation intensity. The study shows potential of SWMM as a design tool if supplemented with a calibration algorithm and some adjustments to the LID module.


2021 ◽  
Author(s):  
Thomas Schatzmayr Welp Sá ◽  
Mohammad K Najjar ◽  
Ahmed W A Hammad ◽  
Elaine Garrido Vazquez ◽  
Assed Naked Haddad

Abstract The shortage of water worldwide is increasingly worrying. Studies in the field suggest that sustainable water resource management via water recycling is fundamental to alleviate the issue. The use of rainwater is an important alternative source that must be considered, mainly, in the water crisis facing the planet. When integrated with the concept of green roofs, the capturing and treatment of rainwater in these structures becomes an even more ecological and sustainable practice. The water drained by the roof can be used for non-potable uses, such as flushing toilet bowls. One of the main concerns when using rainwater, even for non-potable uses, is the quality of the water available, so as not to put users' health at risk. In this way, the present work proposes to experimentally analyze the quality of rainwater drained in a green roof prototype for reuse purposes. The green roof prototype was installed on an experimental bench. After each rain event (four in total), two water samples were collected in the following situations: rainwater captured directly by a container next to the bench, and rainwater drained by the green roof prototype, captured by a container through existing drains at the base of the prototype. The analyzes of the collected samples were carried out at the Environmental Engineering Laboratory (LEMA / UFRJ) and performed according to the Standard Methods for the Examination of Water and Wastewater. Specifically, the experiments examine physicochemical and biological parameters following a rain event on a green roof prototype for sanitary use. Experimental results that were observed and analyzed include color, turbidity, pH, ammonia nitrogen, nitrite, nitrate, orthophosphate, total coliforms, and thermotolerant coliforms to indicate the rainwater quality from green roofs. The majority of parameters assessed were within the value thresholds indicated by the Brazilian standards, while the results of orthophosphate, fecal coliforms, color, and turbidity were not. The greatest divergence is in the concentration of orthophosphate, where a concentration of 10.88mg/L was obtained in this experimental study while other authors present values ​​of 0.1 and 0.01mg/L. Total coliforms also presented high values, but within the expected range. Comparisons with technical documents and international references related to water quality to identify possibilities of the use of rainwater were also conducted. Results indicate that the water quality has the same order of quantity for turbidity, nitrite, and ammonia nitrogen parameters across the standards. Based on such observations, filtration and disinfection processes are therefore required in the green roof system for the use of rainwater for sanitary. Finally, the experimental study of rainwater quality on the green roof presented similar results comparing with international references. The use of green roofs combined with the use of rainwater demonstrates the potential and benefits as an alternative to face the water crisis.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Bernardo Rocha ◽  
Teresa A. Paço ◽  
Ana Catarina Luz ◽  
Paulo Palha ◽  
Sarah Milliken ◽  
...  

Green roofs can be an innovative and effective way of mitigating the environmental impact of urbanization by providing several important ecosystem services. However, it is known that the performance of green roofs varies depending on the type of vegetation and, in drier climates, without resorting to irrigation, these are limited to xerophytic plant species and biocrusts. The aim of this research was therefore to compare differently vegetated green roofs planted with this type of vegetation. A particular focus was their ability to hold water during intense stormwater events and also the quality of the harvested rainwater. Six test beds with different vegetation compositions were used on the roof of a building in Lisbon. Regarding stormwater retention, the results varied depending on the composition of the vegetation and the season. As for water quality, almost all the parameters tested were higher than the Drinking Water Directive from the European Union (EU) and Word Health Organization (WHO) guidelines for drinking-water quality standards for potable water. Based on our results, biocrusts and xerophytic vegetation are a viable green roof typology for slowing runoff during stormwater events.


2020 ◽  
Vol 20 (6) ◽  
pp. 437-444
Author(s):  
Eung Seok Kim

An increase in the ratio of impermeable area due to urban watersheds and industrial development has led to an increase in nonpoint source pollution and floodplains. In order to solve these problems, development and application of low impact development (LID), which is a rainwater management facility, is actively underway. In this study (I), parameters and ranges applied to the Storm Water Management Model-Low Impact Development (SWMM-LID) model are examined. To this end, 100 scenarios were created through the simulation method within the parameter range, and the sensitivity of peak and total runoff to the influence of the parameters of each element technology dealing with runoff was analyzed. As a result, bio retention cell, green roof, rain garden, rain barrell, in the given order, showed a sensitive response. However, since the LID element technology itself is intended to store low-frequency small-scale rainfall, it is important to understand the degree of rainfall, from low to high frequency. Further, the results of this study can be used as basic data for the design and development of LID element technology and performance verification of LID facilities.


Author(s):  
Giovanni Santi ◽  
Sara Battini

The introduction of vegetation in urban areas, through both green roofs and green walls, is a sustainable strategy for improving the environment and the quality of life, as well as crucial for urban biodiversity since the moment it is able to create new habitats for plant and animal species. The design and realization of green roof systems abroad is promoted and stimulated while in Italy, this subject, is still an innovation not supported by many real implementations. The application of this technological green system has a great importance for the redevelopment of existing building heritage, especially for historic buildings, to improve their energy-performance qualities, with respect for their architectural value. The aim of this study is to identify the technical issues for the realization of green roofs in urbanized contexts by focusing on the implementation of a green roof on a building of Leghorn following intervention guidelines developed. This research shows that not only does this system allow higher energy saving, but it also brings a decrease of load bearing on the structure.


Sign in / Sign up

Export Citation Format

Share Document