Assessing Rainwater Quality Treated via a Green Roof System

Author(s):  
Thomas Schatzmayr Welp Sá ◽  
Mohammad K Najjar ◽  
Ahmed W A Hammad ◽  
Elaine Garrido Vazquez ◽  
Assed Naked Haddad

Abstract The shortage of water worldwide is increasingly worrying. Studies in the field suggest that sustainable water resource management via water recycling is fundamental to alleviate the issue. The use of rainwater is an important alternative source that must be considered, mainly, in the water crisis facing the planet. When integrated with the concept of green roofs, the capturing and treatment of rainwater in these structures becomes an even more ecological and sustainable practice. The water drained by the roof can be used for non-potable uses, such as flushing toilet bowls. One of the main concerns when using rainwater, even for non-potable uses, is the quality of the water available, so as not to put users' health at risk. In this way, the present work proposes to experimentally analyze the quality of rainwater drained in a green roof prototype for reuse purposes. The green roof prototype was installed on an experimental bench. After each rain event (four in total), two water samples were collected in the following situations: rainwater captured directly by a container next to the bench, and rainwater drained by the green roof prototype, captured by a container through existing drains at the base of the prototype. The analyzes of the collected samples were carried out at the Environmental Engineering Laboratory (LEMA / UFRJ) and performed according to the Standard Methods for the Examination of Water and Wastewater. Specifically, the experiments examine physicochemical and biological parameters following a rain event on a green roof prototype for sanitary use. Experimental results that were observed and analyzed include color, turbidity, pH, ammonia nitrogen, nitrite, nitrate, orthophosphate, total coliforms, and thermotolerant coliforms to indicate the rainwater quality from green roofs. The majority of parameters assessed were within the value thresholds indicated by the Brazilian standards, while the results of orthophosphate, fecal coliforms, color, and turbidity were not. The greatest divergence is in the concentration of orthophosphate, where a concentration of 10.88mg/L was obtained in this experimental study while other authors present values ​​of 0.1 and 0.01mg/L. Total coliforms also presented high values, but within the expected range. Comparisons with technical documents and international references related to water quality to identify possibilities of the use of rainwater were also conducted. Results indicate that the water quality has the same order of quantity for turbidity, nitrite, and ammonia nitrogen parameters across the standards. Based on such observations, filtration and disinfection processes are therefore required in the green roof system for the use of rainwater for sanitary. Finally, the experimental study of rainwater quality on the green roof presented similar results comparing with international references. The use of green roofs combined with the use of rainwater demonstrates the potential and benefits as an alternative to face the water crisis.

2018 ◽  
Vol 13 (2) ◽  
pp. 42-54 ◽  
Author(s):  
Jarrett Okita ◽  
Cara Poor ◽  
Jessica M. Kleiss ◽  
Ted Eckmann

Green roofs have become a common method to increase water retention on-site in urban areas. However, the long-term water quality of runoff from green roofs is poorly understood. This study evaluated the water quality of stormwater runoff from a regular (non-vegetated) roof, a green roof installed 6 months previously, and a green roof installed 6 years ago in Portland, Oregon. Samples of runoff were taken during every rain event for 10 months, and analyzed for total phosphorus (TP), phosphate (PO3-4), total nitrogen (TN), nitrate (NO-3), ammonia (NH3), copper (Cu), and zinc (Zn). Runoff from the green roofs had higher concentrations of TP and PO3-4 and lower concentrations of Zn compared to the regular roof. Average TP concentrations from the 6-year old roof and 6-month old roof were 6.3 and 14.6 times higher, respectively, than concentrations from the regular roof, and average PO3-4 concentrations from the 6-year old roof and 6-month old roof were 13.5 and 26.6 times higher, respectively, compared to the regular roof. Runoff from the 6-month old green roof had higher concentrations of TP and PO3-4 than the 6-year old green roof during the wet season, but lower concentrations during the dry season. The 6-month old green roof installations where receiving waters are sensitive or impaired may need additional treatment methods to reduce phosphorus levels. As green roofs age, water retention decreases and phosphorus leaching increases during the dry season.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Bernardo Rocha ◽  
Teresa A. Paço ◽  
Ana Catarina Luz ◽  
Paulo Palha ◽  
Sarah Milliken ◽  
...  

Green roofs can be an innovative and effective way of mitigating the environmental impact of urbanization by providing several important ecosystem services. However, it is known that the performance of green roofs varies depending on the type of vegetation and, in drier climates, without resorting to irrigation, these are limited to xerophytic plant species and biocrusts. The aim of this research was therefore to compare differently vegetated green roofs planted with this type of vegetation. A particular focus was their ability to hold water during intense stormwater events and also the quality of the harvested rainwater. Six test beds with different vegetation compositions were used on the roof of a building in Lisbon. Regarding stormwater retention, the results varied depending on the composition of the vegetation and the season. As for water quality, almost all the parameters tested were higher than the Drinking Water Directive from the European Union (EU) and Word Health Organization (WHO) guidelines for drinking-water quality standards for potable water. Based on our results, biocrusts and xerophytic vegetation are a viable green roof typology for slowing runoff during stormwater events.


2013 ◽  
Vol 295-298 ◽  
pp. 755-758 ◽  
Author(s):  
Ya Yun Liu ◽  
Zhi Hong Li ◽  
Xiao Jian Liang ◽  
Yan Peng Lin ◽  
Rong Hao Wu ◽  
...  

Based on the water quality investigation data of December in 2010, the water environment quality of Lv-tang River in Zhanjiang national urban wetland park was assessed using single water quality parameter model and integrated water quality index model. The results show that the water quality of Lv-tang River is worse than the national quality standards for Grade V. The water is polluted seriously. The main pollutants are total nitrogen (TN), ammonia nitrogen (NH3-N) and chemical oxygen demand CODCr with their average concentrations of 60.49 mg/L, 30.57 mg/L and 227.38mg/L, respectively. The averages of their single parameter pollution index are 30.25 , 19.79 and 8.74. The average of single parameter pollution index of the river is 8.23 which indicated that the river belongs to heavy pollution zone. The integrated water quality index was 22.5 showing that the river belongs to serious pollution zone.


Author(s):  
Gilbert K. Gaboutloeloe ◽  
Gugu Molokwe ◽  
Benedict Kayombo

The impact of partially treated wastewater on the water quality of Notwane river stretch in the Gaborone region of Botswana was investigated. Water samples collected at effluent discharge point and three other sampling sites downstream were analyzed for pH, temperature, Biological Oxygen Demand (BOD5), Ammonia-nitrogen (Ammonia-N) and Nitrate-nitrogen (Nitrate-N). Sampling was conducted bi-weekly between February 2013 and April 2013. The ranges of measured parameters were:  pH (7.6-8.5), temperature (22-23ºC), BOD5 (11.2-27.0 mg/l), Ammonia-N (2.4-60.5 mg/l), Nitrate-N (20.6-28.6 mg/l). Analysis of variance, Games-Howel multiple comparisons and Pearson correlation were used to separate variable means. The results signal river non-point pollution due to runoff inflow of organics mainly from land use and domestic waste dumping by nearby dwellings. Temperature, BOD5, and pH range values were all within the Botswana Bureau of Standards (BOBS) limit while the maximum Ammonia-N and Nitrate-N were above BOBS limit by 50.5 mg/l and 6.6 mg/l, respectively. Regulations on indiscriminate waste dumping and discharge standards adherence should be enforced.


2021 ◽  
Vol 67 (3-4) ◽  
pp. 149-155
Author(s):  
Har'el Agra ◽  
Hadar Shalom ◽  
Omar Bawab ◽  
Gyongyver J. Kadas ◽  
Leon Blaustein

Abstract Green roofs are expected to contribute to higher biodiversity in urban surroundings. Typically, green roofs have been designed with low plant diversity. However, plant diversity can be enhanced by controlling resource availability and creating distinct niches. Here we hypothesize that by using different drainage heights during the short plant-growing season in a semi-arid green roof system we can create distinct niches and plant communities. Our experiment took place at the University of Haifa, north Israel. We tested three different heights of drainage outlet: 10 cm under the surface of the substrate (Low), 1 cm under the surface of the substrate (Medium) and 3 cm above the surface of the substrate (High) on plant species-composition in green-roof gardens. Grasses cover was higher in High and Medium drainages while forbs cover was higher in Low drainage. Species richness was the highest in Low drainage while diversity indices showed the opposite trend. We conclude that by changing the height of the drainage we can create different niches and change species composition in a short time period of one growing season. This way we can create more diverse green roof communities and enhance biodiversity in urban areas, particularly in semi-arid regions.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2082 ◽  
Author(s):  
Li Liu ◽  
Liwei Sun ◽  
Jie Niu ◽  
William J. Riley

The Middle and Lower Reaches of the Yangtze River (MLRYR) region, which has humid subtropical climate conditions and unique plum rain season, is characterized by a simultaneous high-frequency urban flooding and reduction in groundwater levels. Retrofitting the existing buildings into green roofs is a promising approach to combat urban flooding, especially for a densely developed city. Here, the application potential of the Green Roof System (GRS) and the Improved Green Roof System (IGRS) designed to divert overflowing water from green roofs to recharge groundwater were analyzed in a densely developed city, Nanchang, China. For the first time, the influence of GRS on the hydraulic condition of Combined Sewage System/Storm Water System (CSS/SWS) is analyzed, which is a direct reflection of the effect of GRS on alleviating urban flooding. The simulation results show that GRS can retain about 41–75% of precipitation in a 2-hour timescale and the flooding volumes in the GRS/IGRS region are 82% and 28% less than those of the Traditional Roof System (TRS) in 10- and 100-yr precipitation events, respectively. In the continuous simulations, GRS also enhances Evapotranspiration (ET), which accounts for 39% of annual precipitation, so that reduces the cumulative surface runoff. Considering the IGRS can provide more hydrological benefits than the GRS under the same climate conditions, we may conclude that the widespread implementation of both the GRS and the IGRS in Nanchang and other densely developed cities in the MLRYR region could significantly reduce surface and peak runoff rates.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Teck-Yee Ling ◽  
Chen-Lin Soo ◽  
Jagath-Retchahan Sivalingam ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
...  

The study of the impact of logging activities on water and sediment quality of Sarawak forest streams is still scarce despite Sarawak being the largest exporter of timber in Malaysia. This study was aimed at determining the water and sediment quality of forest streams in Sarawak and the potential impact of logging activities. In situ parameters were measured, and water and sediment samples were collected at six stations before rain. Additionally, water quality was investigated at three stations after rain. The results showed that canopy removal resulted in large temperature variation and sedimentation in the forest streams. Lower suspended solids were found at stations with inactive logging (<2 mg/L) compared to active logging (10–16 mg/L) activities. The highest concentration of total nitrogen and total phosphorus in water and sediment was 4.4 mg/L, 77.6 μg/L, 0.17%, and 0.01%, respectively. Besides, significantly negative correlation of sediment nitrogen and water total ammonia nitrogen indicated the loss of nitrogen from sediment to water. Water quality of the streams deteriorated after rain, in particular, suspended solids which increased from 8.3 mg/L to 104.1 mg/L. This study reveals that logging activities have an impact on the water quality of Sarawak forest streams particularly in rainfall events.


2012 ◽  
Vol 65 (11) ◽  
pp. 2071-2078 ◽  
Author(s):  
Haiyang Chen ◽  
Yanguo Teng ◽  
Jinsheng Wang

A framework for characteristics identification and source apportionment of water pollution in the Jinjiang River of China was proposed in this study for evaluation. A total of 114 water samples which were generated between May 2009 and September 2010 at 13 sites were collected and analysed. First, support vector machine (SVM) and water quality pollutant index (WQPI) were used for water quality comprehensive evaluation and identifying characteristic contaminants. Later, factor analysis with nonnegative constraints (FA-NNC) was employed for source apportionment. Finally, multi-linear regression of the absolute principal component score (APCS/MLR) was applied to further estimate source contributions for each characteristic contaminant. The results indicated that the water quality of the Jinjiang River was mainly at the third level (65.79%) based on national surface water quality permissible standards in China. Ammonia nitrogen, total phosphorus, mercury, iron and manganese were identified as characteristic contaminants. Source apportionment results showed that industrial activities (63.16%), agricultural non-point source (16.50%) and domestic sewage (12.85%) were the main anthropogenic pollution sources which were influencing the water quality of Jinjiang River. This proposed method provided a helpful framework for conducting water pollution management in aquatic environment.


2014 ◽  
Vol 556-562 ◽  
pp. 2553-2558
Author(s):  
Yue Ping Sun ◽  
Yu Yan Zhao ◽  
De An Zhao ◽  
Jian Qing Hong ◽  
Ju Quan Wang

At present, artificial bait casting and water quality detection are widely used in the domestic aquaculture, it is difficult to improve the yield and quality of the output of aquatic products such as fish, prawn and crab because of low production efficiency and limited labor force. This paper proposed an automatic aquaculture workboat driven by air propellers based on 3G(GNSS、GIS、GPRS), equipped with main controller ARM11, automatic path planning and tracking based on GIS and GNSS system and remote monitoring with GPRS communication module, the workboat can perform bait casting and water quality parameters detection such as dissolved oxygen, pH, water temperature, ammonia nitrogen and salinity automatically according to the aquaculture tasks. It can improve the aquaculture work efficiency and save the manpower and the material resources.


2013 ◽  
Vol 746 ◽  
pp. 147-151 ◽  
Author(s):  
Jun Li ◽  
Jun Wang Tong ◽  
Shou Fang Jiang ◽  
Liu Nan ◽  
Shao Jia Wang ◽  
...  

Objectives To assess the current eutrophication and heavy metal pollution condition of South Lake by monitoring the water quality of South Lake Central Ecological Park in Tangshan city and to provide basic information and science basis for the continuity environmental monitoring and further treatment. Methods The water samples in South Lake were collected during 10th-12st May, 2011. Samples of surface water in Xixingchi, Yanglongshui, and Qingtianjing were determined temperature, pH, turbidity, dissolved oxygen (DO), biochemical oxygen demand (COD), biological oxygen demand (BOD520), total phosphorus (TP), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, Hg, As, Cr, Cu, Zn, Ni, Pb, Cd and so on. Single water quality index and the integrated pollution index were calculated to assess water quality of sampling point. Results The sense character of all sample points did not accord with national standards.The BOD520 of Xixingchi, West Yanglongshui, North Yanglongshui and the four sampling points of Qingtianjing were more than national standards. The TP, ammonia nitrogen and nitrate nitrogen of Qingtianjings sample points exceeded national standards. Indicatorss of other sample were accord with national standards. Xixingchi, whichs comprehensive pollution index was 0.27, belonged to clean water. Yanglongshui, which`s comprehensive pollution index was 0.22, belonged to clean water too. Qingtianjing, whichs comprehensive pollution index was 1.99, belonged to polluted waters. Conclusions Xixingchi and Yanglongshui belongs to clean water. Qingtianjing belongs polluted water. The TP, ammonia nitrogen and nitrate nitrogen of Qingtianjings four sample points exceeded national standards. The severity of the pollution is: Qingtianjing>Yanglongshui>Xixingchi.


Sign in / Sign up

Export Citation Format

Share Document