scholarly journals Flood routing by linear Muskingum method using two basic floods data using particle swarm optimization (PSO) algorithm

2020 ◽  
Vol 20 (5) ◽  
pp. 1897-1908
Author(s):  
Hadi Norouzi ◽  
Jalal Bazargan

Abstract The Muskingum method is one of hydrological approaches that has been used for flood routing for many years thanks to its simplicity and reasonable accuracy over other methods. In engineering works, the calculation of the Peak section of a flood hydrograph is crucially important. In the present study, using the particle swarm optimization (PSO) algorithm, instead of using a single basic flood, the parameters of the linear Muskingum method (X, K, Δt) are calculated by computed arithmetic and geometric means relevant to two basic floods in the form of eight different models for calculating the downstream hydrograph. The results indicate that if the numerical values of the calculated flood inflow are placed in the interval of the inflow and the basic flood which the parameters X, K, Δt are from, the computation accuracy in approximating the outflow flood related to the peak section of the inflow hydrograph increases for all the mentioned models. In other words, if the arithmetic mean of X, K and the geometric mean of Δt, relevant to the two basic floods, are used instead of using values of X, K, Δt of a single basic flood, the computational accuracy in estimating the flood peak section of the hydrograph in downstream has the highest increase among all the eight models. Thus, the Mean Relative Error (MRE) relevant to the peak section of the inflow hydrograph of the third flood (observational flood) obtained by the first and second basic floods was equal to 4.89% and 2.91%, respectively, while in case of using the arithmetic mean of X and K and the geometric mean of Δt, related to the first and second basic floods (the best models presented in this study), this value is equal to 1.66%.

Author(s):  
Hadi Norouzi ◽  
Jalal Bazargan

Abstract The Muskingum method is one the simplest and most applicable methods of flood routing. Optimizing the coefficients of linear Muskingum is of great importance to enhance accuracy of computations on an outflow hydrograph. In this study, considering the uncertainty of flood in the rivers and by application of the particle swarm optimization (PSO) algorithm, we used the data obtained from three floods simultaneously as basic flood to optimize parameters of linear Muskingum (X, K and Δt), rather than using inflow and outflow hydrographs of a single basic flood (observational flood), and optimized the outflow discharge at the beginning of flood (O1) as a percentage of inflow discharge at the beginning of flood (I1). The results suggest that the closer inflow discharge variation of basic flood to the inflow discharge variation of observational flood, the accuracy of outflow hydrograph computations will increase. Moreover, when the proposed approach is used to optimize parameters of X, K and Δt, the accuracy of outflow hydrograph computations will increase too. In other words, if rather than using a single basic flood, the proposed approach is applied, the average values of mean relative error (MRE) of total flood for the first, second, third and fourth flood will be improved as 31, 13, 39 and 33%, respectively.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


2020 ◽  
Vol 11 (S1) ◽  
pp. 343-358 ◽  
Author(s):  
Umut Okkan ◽  
Umut Kirdemir

Abstract In the literature about the parameter estimation of the nonlinear Muskingum (NL-MUSK) model, benchmark hydrographs have been subjected to various metaheuristics, and in these studies the minor improvements of the algorithms on objective functions are imposed as ‘state-of-the-art’. With the metaheuristics involving more control variables, the attempt to search global results in a restricted solution space is not actually practical. Although metaheuristics provide reasonable results compared with many derivative methods, they cannot guarantee the same global solution when they run under different initial conditions. In this study, one of the most practical of metaheuristics, the particle swarm optimization (PSO) algorithm, was chosen, and the aim was to develop its local search capability. In this context, the hybrid use of the PSO with the Levenberg–Marquardt (LM) algorithm was considered. It was detected that the hybrid PSO–LM gave stable global solutions as a result of each random experiment in the application for four different flood data. The PSO–LM, which stands out with its stable aspect, also achieved rapid convergence compared with the PSO and another hybrid variant called mutated PSO.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2021 ◽  
Vol 40 (5) ◽  
pp. 9007-9019
Author(s):  
Jyotirmayee Subudhi ◽  
P. Indumathi

Non-Orthogonal Multiple Access (NOMA) provides a positive solution for multiple access issues and meets the criteria of fifth-generation (5G) networks by improving service quality that includes vast convergence and energy efficiency. The problem is formulated for maximizing the sum rate of MIMO-NOMA by assigning power to multiple layers of users. In order to overcome these problems, two distinct evolutionary algorithms are applied. In particular, the recently implemented Salp Swarm Algorithm (SSA) and the prominent Optimization of Particle Swarm (PSO) are utilized in this process. The MIMO-NOMA model optimizes the power allocation by layered transmission using the proposed Joint User Clustering and Salp Particle Swarm Optimization (PPSO) power allocation algorithm. Also, the closed-form expression is extracted from the current Channel State Information (CSI) on the transmitter side for the achievable sum rate. The efficiency of the proposed optimal power allocation algorithm is evaluated by the spectral efficiency, achievable rate, and energy efficiency of 120.8134bits/s/Hz, 98Mbps, and 22.35bits/Joule/Hz respectively. Numerical results have shown that the proposed PSO algorithm has improved performance than the state of art techniques in optimization. The outcomes on the numeric values indicate that the proposed PSO algorithm is capable of accurately improving the initial random solutions and converging to the optimum.


Sign in / Sign up

Export Citation Format

Share Document