scholarly journals Ca2+ removal from water by the use of Na-palygorskite for potential water softening

Author(s):  
Gianni Eleni ◽  
Panagopoulos Georgios ◽  
Katsanou Konstantina ◽  
Biniaris Alexandros

Abstract Sodium-treated palygorskite (Na-Pal) sample was investigated for the sorption of Ca2+ ions with the aim of treating water hardness. The effective modification of the mineral with Na+ was verified by XRD and FT-IR techniques. Batch kinetic experiments in standard solutions were performed proving that 30 g/L of Na-Pal were highly satisfactory as the Ca2+ removal reached the 85% for 100 mg/L Ca2+ initial concentration, which is very promising for the softening of moderate or hard waters. The Ca2+ removal found to be pH and temperature independent, with high removal rates at room temperature and common pH values of water samples (pH 4–12), rendering these circumstances ideal for the low-cost maintenance of the procedure that took place within the first 5 min. The linear form of the Langmuir isotherm model expressed better (R2 = 1) the Ca2+ sorption, which means that takes place at specific homogeneous sites of Na-Pal. Thermodynamic analysis proved the non-spontaneous (positive ΔG0), physical, and exothermic nature (ΔH0 = −10.8197 kJ/mol) of the reaction, while the kinetic models proved the chemisorption of Ca2+ by Na-Pal.

2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


Author(s):  
Joshua O. Ighalo ◽  
Ibrahim O. Tijani ◽  
Oluwaseun J. Ajala ◽  
Fisayo O. Ayandele ◽  
Omodele A. Eletta ◽  
...  

Background: Modified bio-based adsorbents from plant sources can be used for pollution remediation by adsorption due to their low cost and availability in large quantities. Objective: In this study, the competitive biosorption of Pb(II) and Cu(II) by Micropogonias undulates functionalised fish scales (FFS) was conducted. The functionalisation was done by wet impregnation with Fe2+. Method: The biosorbent was characterised by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) and Branueur–Emmett–Teller (BET) analyses. Results: The major constituents in the FFS were calcium and phosphorus from the collagen and apatite on the scales. Optimum removal efficiency for both metals was >99% at 10 g/l dosage. It was observed that the Langmuir isotherm model and the pseudo second order kinetics model were the best fit for the experimental data. The monolayer adsorption capacity of FFS for Pb(II) and Cu(II) was observed to be 96.15 mg/g and 100 mg/g respectively. Conclusion: The study revealed that the competitive biosorption of heavy metals can be achieved (at a good adsorption capacity) using functionalised Micropogonias undulates fish scales.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 467
Author(s):  
Emília Mendes da Silva Santos ◽  
Isabela Regina Alvares da Silva Lira ◽  
Hugo Moraes Meira ◽  
Jaciana dos Santos Aguiar ◽  
Raquel Diniz Rufino ◽  
...  

In this study, a new formulation of low-cost, biodegradable, and non-toxic biosurfactant by Candida sphaerica UCP 0995 was investigated. The study was conducted in a bioreactor on an industrial waste-based medium, and a central composite rotatable design was used for optimization. The best results, namely a 25.22 mN/m reduction in surface tension, a biosurfactant yield of 10.0 g/L, and a critical micelle concentration of 0.2 g/L, were achieved in 132 h at an agitation speed of 175 rpm and an aeration rate of 1.5 vvm. Compositional and spectroscopic analyses of the purified biosurfactant by chemical methods, Fourier transform infrared spectroscopy, and nuclear magnetic resonance suggested that it is a glycolipid-type biosurfactant, and it showed no cytotoxicity in the MTT assay. The biosurfactant, submitted to different formulation methods as a commercial additive, remained stable for 120 days at room temperature. Tensioactive properties and stability were evaluated at different pH values, temperatures, and salt concentrations. The biosurfactant obtained with all formulation methods demonstrated good stability, with tolerance to wide ranges of pH, temperature and salinity, enabling application under extreme environmental conditions. Bioremediation tests were performed to check the efficacy of the isolated biosurfactant and the selected microbial species in removing oil from soil. The results demonstrated that the biosurfactant produced has promising properties as an agent for the bioremediation of contaminated soil.


2021 ◽  
Vol 13 (23) ◽  
pp. 13264
Author(s):  
A. A. Oyekanmi ◽  
Akil Ahmad ◽  
Siti Hamidah Mohd Setapar ◽  
Mohammed B. Alshammari ◽  
Mohammad Jawaid ◽  
...  

This investigation reports on the biosorption mechanism of Congo Red dyes (CR) in aqueous solution using acid-treated durian peels, prepared for this study. The biosorbent nature was characterized using the Scanning Electron Microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and Brunaure-Emmet-Teller (BET). The effect of process parameters within operational range of pH (2–9), contact time (10–200 min), initial concentration (25–400 mg g−1) and temperature (25–65 °C) for the optimum removal of CR dyes was investigated using central composite design (CCD) under response surface methodology (RSM), and revealed that the optimum condition of biosorption was achieved around a pH of 5.5, contact time of 105 min at initial concentration of 212.5 mg L−1 within 45 °C temperature, which corresponds to 95.2% percent removal of CR. The experimental data fitted better to the second order polynomial model, with a correlation coefficient R2 value of 0.9917 and the Langmuir isotherm model with biosorption capacity of 107.52 mg g−1. Gibbs free energy indicated that the adsorption of CR dyes was spontaneous. The mechanism of the adsorption of CR dyes revealed that the biosorption of CR dyes investigated under different operational conditions show that under acidic pH, the adsorption efficiency of the acid treated durian peels is enhanced for the adsorption of CR dye molecules.


2019 ◽  
Vol 51 (1) ◽  
pp. 93-100
Author(s):  
Irena Ilic ◽  
Natasa Jovic-Jovicic ◽  
Predrag Bankovic ◽  
Zorica Mojovic ◽  
Davor Loncarevic ◽  
...  

Montmorillonite (Mt) and acid modified montmorillonite (MtA) were tested as nicotine adsorbents. The samples were characterized using FT-IR spectroscopy and low temperature nitrogen physisorption. Nicotine adsorption was performed with respect to contact time, pH and initial nicotine concentration. The kinetics of adsorption obeyed the pseudo-second-order kinetics. The optimal pH values for nicotine adsorption were 6 and 9 for Mt and MtA, respectively. The isotherms related to adsorption on Mt at pH = 6 and 9 as well as for MtA at pH=6 were best fitted with Sips isotherm model, while adsorption onto MtA at pH=9 obeyed Langmuir isotherm model.


2021 ◽  
Author(s):  
Wensi Chen ◽  
Ting Wang ◽  
Zeou Dou ◽  
Xing Xie

Abstract The continuous emergence of infectious viral diseases has become a major threat to public health. To quantify viruses, proper handling of water samples is required to ensure the accuracy and reliability of the testing results. In this study, we develop enhanced porous superabsorbent polymer (PSAP) beads to pretreat and store water samples for virus detection. By applying PSAP beads to collect water samples, the viruses are captured and encapsulated inside the beads while undesired components are excluded. We have successfully demonstrated that the shelf life of the model virus can be effectively extended at room temperature (22°C) and elevated temperature (35°C). Both the infectivity level and genome abundance of the viruses are protected even in a complex medium like untreated wastewater. Under the tested conditions, the viral degradation rate constant can be reduced to more than 10 times using the PSAP beads. Therefore, the enhanced PSAP beads provide a low-cost and efficient sample pretreatment and storage method that is feasible and practicable for large-scale surveillance of viral pathogens in water samples.


2016 ◽  
Vol 847 ◽  
pp. 294-298
Author(s):  
Xiao Feng Fan ◽  
Yue Cheng

MnO2 nanoparticles were prepared by one-step redox under room temperature. The sample was characterized by XRD, SEM, TEM and FT-IR. The results indicated that the MnO2 nanoparticles was amorphous δ-MnO2 with the uniform size of 10-20nm in particle diameter, which can be seen by XRD patterns. The four peaks appear at 2θ = 23.24°,36.1°,45.42°and 64.38°, respectively. FT-IR results showed the 519 cm-1 as Mn-O features manganese dioxide absorption. The effect of the pH, nanoMnO2 dosage, reaction time, reaction temperature and initial concentration were studied on the removal of reactive brilliant blue. It was found that the removal ability of reactive brilliant blue was the best under the selected conditions: pH was 3.0, dosage of nanoMnO2 was 0.05g, KN-R solution concentration was 5mg / L, reaction time was 2h, temperature was 25°C.


2021 ◽  
Vol 40 (3) ◽  
pp. 28-42
Author(s):  
Y. Walid AlBizreh ◽  
rasha Almostafa ◽  
Malak ALJoubbeh

The boiled tea leaves residual was modified with oleum of weight 1:1 to prepare an adsorbent that is capable to adsorb nicotine on its surface. The surface properties of the sample were studied by using the FT-IR spectroscopy after each treatment resulting obvious peaks that indicate the modification of the sample with oleum and the adsorption of nicotine on its surface. The concentration of nicotine in the prepared solutions was measured by the use of spectral analysis. The change of nicotine΄s adsorption was studied with the change of time. An increase in the adsorbed amount was noticed until the equilibrium was reached after 24hours. In addition, an increase of the adsorbed amount of nicotine with the increase of its initial concentration was observed at the room temperature. The experimental data corresponded with adsorption models of Langmuir, Freundlish and Temkin, besides, a mechanism of the adsorption of nicotine was suggested to occur with the participation of the two nitrogen atoms.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Zhoufeng Wang ◽  
Fang Liao

We reported the synthesis of fluffy poly(o-phenylenediamine) (PoPD) microspheres via chemical polymerization of oPD monomers by ammonium persulfate (APS) at room temperature. The SEM images showed that PoPD microspheres with an average diameter of 1.5 μm and their surfaces consist of highly oriented nanofibers. Furthermore, PoPD microspheres were used as adsorbent materials for the removal of Cr(VI) from aqueous solutions. The Cr(VI) adsorption behavior on the prepared PoPD microspheres was studied at different adsorption contact times, solution pH values, and amount of the adsorbent. Experimental isotherms of Cr(VI) ions were successfully fit to the Langmuir isotherm model. The results indicate that the PoPD fluffy microspheres are an effective adsorbent for the removal of Cr(VI) ions from aqueous solutions, and they could be useful in treatment of Cr(VI)-polluted wastewaters.


2021 ◽  
Vol 16 (4) ◽  
pp. 869-880
Author(s):  
Normah Normah ◽  
Novie Juleanti ◽  
Patimah Mega Syah Bahar Nur Siregar ◽  
Alfan Wijaya ◽  
Neza Rahayu Palapa ◽  
...  

Modification of the layered double hydroxide of CuAl-LDHs by composite with hydrochar (HC) to form CuAl-HC LDH. Material characterization by XRD, FT-IR and SEM analysis was used to prove the success of the modification. The characterization of XRD and FT-IR spectra showed similarities to pure LDH and HC. Selectivity experiments were carried out by mixing malachite green, methylene blue, rhodamine-B, methyl orange, and methyl red to produce the most suitable methyl blue dye for CuAl-LDH, HC and CuAl-HC adsorbents. The effectiveness of CuAl-HC LDH as adsorbent on methylene blue adsorption was tested through several influences such as adsorption isotherm, thermodynamics, and adsorbent regeneration. CuAl-HC LDH adsorption isotherm data shows that the adsorption process tends to follow the Langmuir isotherm model with a maximum adsorption capacity of 175.439 mg/g with a threefold increase compared to pure LDH. The effectiveness of the adsorbent for repeated use reaches five cycles as evidenced by the maximum capacity regeneration data reaching 82.2%, 79.3%, 77.9%, 76.1%, and 75.8%. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document