scholarly journals Adsorption of nicotine from aqueous solutions on montmorillonite and acid-modified montmorillonite

2019 ◽  
Vol 51 (1) ◽  
pp. 93-100
Author(s):  
Irena Ilic ◽  
Natasa Jovic-Jovicic ◽  
Predrag Bankovic ◽  
Zorica Mojovic ◽  
Davor Loncarevic ◽  
...  

Montmorillonite (Mt) and acid modified montmorillonite (MtA) were tested as nicotine adsorbents. The samples were characterized using FT-IR spectroscopy and low temperature nitrogen physisorption. Nicotine adsorption was performed with respect to contact time, pH and initial nicotine concentration. The kinetics of adsorption obeyed the pseudo-second-order kinetics. The optimal pH values for nicotine adsorption were 6 and 9 for Mt and MtA, respectively. The isotherms related to adsorption on Mt at pH = 6 and 9 as well as for MtA at pH=6 were best fitted with Sips isotherm model, while adsorption onto MtA at pH=9 obeyed Langmuir isotherm model.

2010 ◽  
Vol 160-162 ◽  
pp. 1804-1809
Author(s):  
Qiang Bi ◽  
Juan Qin Xue ◽  
Ying Juan Guo ◽  
Yu Jie Wang ◽  
Yun Feng Xue

The adsorption of cadmium in simulated wastewater by chitosan was investigated. The influence of temperature, contact time and pH on adsorption efficiency of cadmium was examined. Some related mathematical models were used in the fitting of experimental data. The results showed that at room temperature, the optimum pH of adsorption is between 4 and 7. At lower pH values, a strong competition existed between cadmium ions and protons for sorption sites and the sorption efficiency was decreased. After 60 minutes the adsorption equilibrium can be achieved. Chitosan is very effective at removing cadmium with the maximum adsorption capacity is 112.05mg•g-1. The adsorption kinetic curves agree with the pseudo-second-order adsorption kinetic equations and the adsorption isotherms could be well described by Langmuir isotherm equations.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


2015 ◽  
Vol 1104 ◽  
pp. 111-117
Author(s):  
Wei Mei Shi ◽  
Ye Chun Ding ◽  
Long Huo Wu

Through the experiment of Ciprofloxacin (CIP) adsorption by KMnO4modifiedDurio zibethinusMurr Shell (KDS), the best condition, adsorption kinetics and thermodynamic characteristics were studied. The isotherm parameters were estimated by linear regression analysis with Langmuir isotherm model, Temkin isotherm and Freundlich isotherm model. The equilibrium process was described well by the Freundlich isotherm model, which indicated that the adsorption thermodynamics of CIP on KDS is a multilayer adsorption process.The kinetics of the interactions showed better agreement with the pseudo-second-order model (R2=0.9999). This study demonstrated that KDS could be used for the removal of CIP in water treatment.


2010 ◽  
Vol 178 ◽  
pp. 8-16
Author(s):  
Liang Dong Feng ◽  
Bo Qing Chen ◽  
Ying Ying Shi ◽  
Ying Wei Guo ◽  
Jing Huang ◽  
...  

1, 10-phenanthroline and triethylamine modified palygorskites were prepared by microwave irradiation, and characterized with FT-IR technique. The effects of contact time, adsorbent dosage, and pH value of the initial solution on the adsorption characters of Mn2+ were investigated. The adsorption of Mn2+ from aqueous solutions using 1, 10-phenanthroline or triethylamine modified palygorskites were investigated. Experiment results indicated that 1,10-phenanthroline and triethylamine molecules have been successfully grafted to palygorskite. The adsorption was rapid during the first 5 minuts and equilibrium were attained within 60 minutes in the initial concentration of Mn2+ of 50 and 100 mg•L-1, and fast adsorption in the first 10 minutes and slowly increased with the contact time due to the adsorption of palygorskite. The 1, 10-phenanthroline modified palygorskites had higher adsorption capacity than triethylamine modified palygorskites. Compared with natural palggorskites, the Mn2+ ions adsorption capacities of palggorskite modified by 1, 10-phenanthroline or triethylamine were significantly improved. There were less difference in the adsorption capacity between different dasages of 1, 10-phenanthroline modified palygorskites, but the adsorption capacity of Mn2+ adsorbed onto triethylamine modified palygorskites decreased with increasing the dosages. A Lagergren pseudo-second order model best described the kinetics of adsorption of Mn2+ onto the modified palygorskites.


2011 ◽  
Vol 391-392 ◽  
pp. 1324-1329
Author(s):  
Ying Ying Shi ◽  
Qiang Hua Zhang ◽  
Liang Dong Feng ◽  
Qing Ping Xiong ◽  
Fei Liu

By using Palygorskite as matrix and introducing the surface ion-imprinting concept to the synthesis process, a Palygorskite-supported organic–inorganic hybrid polymer for selective separation of Pb2+ from aqueous solutio was prepared. The prepared polymer was characterized with techniques of SEM, XRD and FT-IR. The effects of contact time, pH value and temperature of the initial solution on the adsorption characters of Pb2+ were investigated. Under the optimum conditions, the ions-imprinted polymer offered a fast kinetics for the adsorption of Pb2+ and the maximum capacity was 4.51 mg/g. And the pseudo-second order model bestly described the kinetics of adsorption of Pb2+ onto the as-prepared materials.


2020 ◽  
Vol 15 (3) ◽  
pp. 765-785
Author(s):  
Taibi Mohamed ◽  
Elaziouti Abdelkader ◽  
Laouedj Nadjia ◽  
Dellal Abdelkader

The RM (RM stands for the pristine clay) collected from sites in the Naima-Tiaret-Algeria and its purified phase TM (TM stands for the treated clay) were characterized using XRF, XRD, FT−IR, SEM−EDX, and DC electrical conductivity techniques. The as-prepared clays were used as potential adsorbents for the removal of Cu2+ and Zn2+ metals ions. Highly purified clay TM, exhibiting a basal, spacing of 25.83 Å and CEC of 51 meq/100 g, was obtained. The type of interstratified I/M in the studied sites is S=1, based on the calculation method of Watanabe. The percentage of illite type S=1 is between 80−85% illite. The adsorption equilibrium was established in 60 min with the capacities of 28.57 and 24.39 mg/g for Cu2+ onto RM, 32.25 and 4.95 mg/g for Zn2+ in the presence of TM. D-R isotherm model was more suitable with the adsorption process than Freundlich and Langmuir models suggesting the ion exchange nature of the retention mechanism in most cases (E > 8 kJ/mol). Pseudo second-order model best described the kinetics of adsorption process. The adsorption mechanism was mainly monitored by ion exchange mechanism between exchangeable interlayer cations (Na) in the interstratified I/M and Cu2+ or Zn2+ metals from aqueous matrix. Further, the release of H+ ions from the edge of the layer structure in acidic environments promote the adsorption of heavy metals onto the surfaces interstratified I/M clay soils via electrostatic attraction. Copyright © 2020 BCREC Group. All rights reserved 


2013 ◽  
Vol 394 ◽  
pp. 8-13
Author(s):  
Zong Qiang Zhu ◽  
Shuang Cao ◽  
Wen Hui Wei ◽  
Yi Nian Zhu

Static adsorption of Sb (III) on a porous biomorph-genetic composite of Fe2O3/Fe3O4/C (PBGC-Fe/C-B) was studied. The results showed that the kinetic curve of Sb (III) adsorption by PBGC-Fe/C-B had same change trend under initial concentration of 5, 10 and 50 mg/L. The fitting and regression analysis of four kinds of kinetic model indicated that, the adsorption kinetics of Sb (III) by the PBGC-Fe/C-B well follow the pseudo-second-order model (R2>0.9999). At different reaction temperature (25 °C, 35 °C and 45 °C), the adsorption capacity of Sb (III) by PBGC-Fe/C-B both increased with increasing the solution equilibrium concentration. While it showed a declined tendency with temperature increased. The Langmuir isotherm model (R2>0.98) and the Freundlich isotherm model (R2>0.95) had both better fitted with the equilibrium data.


2021 ◽  
Vol 22 (11) ◽  
pp. 6090
Author(s):  
Bayan Khalaf ◽  
Othman Hamed ◽  
Shehdeh Jodeh ◽  
Roland Bol ◽  
Ghadir Hanbali ◽  
...  

The goal of this work was to develop polymer-based heterocycle for water purification from toxic pesticides such as difenoconazole. The polymer chosen for this purpose was cellulose nanocrystalline (CNC); two cellulose based heterocycles were prepared by crosslinking with 2,6-pyridine dicarbonyl dichloride (Cell-X), and derivatizing with 2-furan carbonyl chloride (Cell-D). The synthesized cellulose-based heterocycles were characterized by SEM, proton NMR, TGA and FT-IR spectroscopy. To optimize adsorption conditions, the effect of various variable such as time, adsorbent dose, pH, temperature, and difenoconazole initial concentration were evaluated. Results showed that, the maximum difenoconazole removal percentage was about 94.7%, and 96.6% for Cell-X and Cell-D, respectively. Kinetic and thermodynamic studies on the adsorption process showed that the adsorption of difenoconazole by the two polymers is a pseudo-second order and follows the Langmuir isotherm model. The obtained values of ∆G ° and ∆H suggest that the adsorption process is spontaneous at room temperature. The results showed that Cell-X could be a promising adsorbent on a commercial scale for difenoconazole. The several adsorption sites present in Cell-X in addition to the semi crown ether structure explains the high efficiency it has for difenoconazole, and could be used for other toxic pesticides. Monte Carlo (MC) and Molecular Dynamic (MD) simulation were performed on a model of Cell-X and difenoconazole, and the results showed strong interaction.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 643 ◽  
Author(s):  
Lidia Bandura ◽  
Małgorzata Franus ◽  
Jarosław Madej ◽  
Dorota Kołodyńska ◽  
Zbigniew Hubicki

Nowadays, the contamination of water with phenol is a serious environmental problem. This compound occurs very often with heavy metal ions which makes purification of water even more difficult. This article presents the problem of the removal of phenol from aqueous solutions in the presence of Cu(II) ions on synthetic zeolite NaP1 and zeolite NaP1 modified with chitosan. The adsorbents were determined with the use of Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption/desorption isotherm, and scanning electron microscopy (SEM). The studies on isotherms and batch kinetics under diversified experimental conditions with respect to initial concentration, contact time, and pH were discussed. Both Cu(II) and phenol adsorption increases with the initial concentration. Different isotherm models correspond well with the data acquired through experiments. The kinetics of adsorption follows the pseudo-second order rate equation. The studies indicate that the obtained sorbents can be employed for efficient removal of phenol from wastewater in the presence of Cu(II) ions.


2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


Sign in / Sign up

Export Citation Format

Share Document