scholarly journals Sustainable Durio zibethinus-Derived Biosorbents for Congo Red Removal from Aqueous Solution: Statistical Optimization, Isotherms and Mechanism Studies

2021 ◽  
Vol 13 (23) ◽  
pp. 13264
Author(s):  
A. A. Oyekanmi ◽  
Akil Ahmad ◽  
Siti Hamidah Mohd Setapar ◽  
Mohammed B. Alshammari ◽  
Mohammad Jawaid ◽  
...  

This investigation reports on the biosorption mechanism of Congo Red dyes (CR) in aqueous solution using acid-treated durian peels, prepared for this study. The biosorbent nature was characterized using the Scanning Electron Microscopy (SEM), Fourier Transform infrared spectroscopy (FT-IR) and Brunaure-Emmet-Teller (BET). The effect of process parameters within operational range of pH (2–9), contact time (10–200 min), initial concentration (25–400 mg g−1) and temperature (25–65 °C) for the optimum removal of CR dyes was investigated using central composite design (CCD) under response surface methodology (RSM), and revealed that the optimum condition of biosorption was achieved around a pH of 5.5, contact time of 105 min at initial concentration of 212.5 mg L−1 within 45 °C temperature, which corresponds to 95.2% percent removal of CR. The experimental data fitted better to the second order polynomial model, with a correlation coefficient R2 value of 0.9917 and the Langmuir isotherm model with biosorption capacity of 107.52 mg g−1. Gibbs free energy indicated that the adsorption of CR dyes was spontaneous. The mechanism of the adsorption of CR dyes revealed that the biosorption of CR dyes investigated under different operational conditions show that under acidic pH, the adsorption efficiency of the acid treated durian peels is enhanced for the adsorption of CR dye molecules.

2012 ◽  
Vol 599 ◽  
pp. 391-394 ◽  
Author(s):  
Jin Liu ◽  
Xian Zhong Cheng ◽  
Peng Qin ◽  
Ming Ying Pan

The performance of native eggshell membrane in removing of Congo Red (CR) from aqueous solution was investigated. The effect of pH, adsorbent concentration, temperature, and contact time were performed by static testing. The maximum biosorption was both observed at pH 7.0 on the eggshell membrane. Optimal adsorption capacity (112.3 mg g-1) at initial concentration 10 mg L-1 and rate (99.17%) was obtained at pH 6.8. Characterization of the bioSuperscript textsorbent eggshell membrane was performed using scanning electron microscope (SEM), and Fourier transform-infrared (FTIR) spectroscopy. The kinetic and equilibrium studies suggest that the adsorption follows Langmuir isotherm model.


2020 ◽  
Vol 9 (3) ◽  
pp. 197-206
Author(s):  
Thaharah Ramadhani ◽  
Faisal Abdullah ◽  
Indra Indra ◽  
Abrar Muslim ◽  
Suhendrayatna Suhendrayatna ◽  
...  

The use of a low-cost biosorbent prepared from Ipomoea pes-caprae stem for the adsorption of Cd(II) ions from aqueous solution at different contact times, biosorbent sizes, pH values, and initial Cd(II) ions concentration solution was investigated. The biosorbent was analyzed using Fourier-transform infrared spectroscopy (FT-IR) to find important IR-active functional groups. A scanning electron microscope (SEM) was used to examine the biosorbent morphology. The experimental results showed the highest Cd(II) ions adsorption was 29.513 mg/g  under an optimal condition as initial Cd(II) ions concentration of 662.77 mg/L, 1 g dose, 80-min contact time, pH 5, 75 rpm of stirring speed, 1 atm, and 30 oC. Cd(II) ions' adsorption kinetics obeys the linearized pseudo-second-order kinetics (R2 = 0.996), and the adsorption capacity is based on the optimal condition, and the rate attained was 44.444 mg/g and 0.097 g/mg. Min, respectively. Besides, the adsorption isotherms were very well fitted by the linearized Langmuir isotherm model, and the monolayer adsorption capacity and pore volume determined was 30.121 mg/g and 0.129 L/mg, respectively. These results indicated the chemisorption nature


2012 ◽  
Vol 573-574 ◽  
pp. 63-67 ◽  
Author(s):  
Hong Mei Chen ◽  
Jin Liu ◽  
Xian Zhong Cheng ◽  
Yuan Peng

The performance of native eggshell membrane in removing of malachite green (MG) from aqueous solution was investigate. The effect of pH, adsorbent concentration, temperature, and contact time were performed by static testing. The maximum biosorption was both observed at pH 6.0 on the eggshell membrane. Optimal adsorption capacity (89.72 mg g-1) at initial concentration 100 mg L-1 and rate (98.69%) was obtained at pH 5.5. Characterization of the biosorbent eggshell membrane was performed using scanning electron microscope (SEM), and Fourier transform-infrared (FTIR) spectroscopy. The kinetic and equilibrium studies suggest that the adsorption follows Langmuir isotherm model. Desorption studies revealed that MG could be well removed from wastewater.


2020 ◽  
Vol 16 (7) ◽  
pp. 880-892
Author(s):  
Şerife Parlayıcı ◽  
Kübra Tuna Sezer ◽  
Erol Pehlivan

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents. Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process. Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions. Conclusıon: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.


2021 ◽  
Author(s):  
Siti Nor Atika Baharin ◽  
Nurul Hafawati Hashim ◽  
Izyan Najwa Mohd Norsham ◽  
Syed Shahabuddin ◽  
Kavirajaa Pandian Sambasevam

Abstract The present study highlights the sunlight-assisted photodegradation of methylene blue (MB) using tungsten disulphide/polypyrrole (WS2/PPy) composite as a photocatalyst. WS2/PPy was prepared via oxidative polymerization using ferric chloride (FeCl3) as an oxidant. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) measurement were used to ensure the physicochemical properties of WS2/PPy. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB) under sunlight irradiation. The results showed that the degradation efficiency of WS2/PPy was higher than the pristine PPy Several optimizations such as effect of the concentration, contact time, photocatalyst dosage and initial concentration were investigated. The results revealed that, under optimum condition of pH 3, 100 mg photocatalyst dosage, 10 ppm MB initial concentration within 180 minutes contact time, were the most effective parameters, that produced 96.15% of sunlight-assisted photodegradation in aqueous solution of MB.


2020 ◽  
Vol 32 (9) ◽  
pp. 2381-2388
Author(s):  
LAM VAN TAN ◽  
HONG THAM NGUYEN THI ◽  
TO UYEN DAO THI ◽  
VAN THUAN TRAN

The use of inorganic layer compounds as adsorbents for organic dyes in water treatment is of increasing interest. In this study, an attempt is made for the synthesis of Mg/Al LDHs by the hydrothermal method. The synthesis temperature was found to significantly affect to the structure of layered double hydroxides (LDHs), as pointed out by FT-IR analysis. In addition, an adsorption capacity of the synthesized LDHs against Congo red in aqueous solutions was investigated and also compared the adsorption results with other dyes such as methylene blue and methyl orange.


2020 ◽  
Vol 12 (21) ◽  
pp. 8928
Author(s):  
Yashni Gopalakrishnan ◽  
Adel Al-Gheethi ◽  
Marlinda Abdul Malek ◽  
Mawar Marisa Azlan ◽  
Mohammed Al-Sahari ◽  
...  

Azo dyes including C. I. Basic Brown 16 (BB16) are one of the coloured organic compounds that have adverse effects on human health and the environment. The current work aims to optimise the adsorption of C.I BB16 in aqueous solution using durian (Durio zibethinus murray) shell as a low-cost green adsorbent. Durian shell was characterised by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The adsorption process was optimised with response surface methodology (RSM) based on pH (4–8), time (30–240 min), durian shell dosage (0.1–1.0 g/L) and initial concentration of C.I BB16 (10–20 ppm). The removal efficiency was determined based on the reduction of chemical oxygen demand (COD) and the decolourisation of C.I BB16. The techno-economic analysis was described in the current work to know the economic feasibility of durian shells as an adsorbent. The SEM images showed that durian shell adsorbent has a smooth surface with no pores. FTIR spectra confirmed the presence of -C-O, =C–H, C=C, -C-O-C and O-H bonds in durian shell. Maximum decolourisation (77.6%) and COD removal (80.6%) for C.I BB16 was achieved with the interaction between pH, time and adsorbent dose and initial concentration of C.I BB16. The optimal operating factors for adsorption of C.I BB16 recorded at pH 8, time (30 min), durian shell dosage (1 g/L) and 15 mg /L of C.I BB16 concentrations were 77.61 vs. 74.26 (%) of C.I BB16 removal and 80.60 vs. 78.72 (%) of COD removal with an R2 coefficient of 0.94 at p < 0.05. The specific cost of durian shell coagulant production is USD 172.71 per ton which is lower than the market price of honeydew peels-activated carbon (HDP-AC) (USD 261.81) and the commercial market price of activated carbon which is USD 1000.00/tons. These findings indicated that the durian adsorbent provides alternative methods for treating hair dye wastewater. These findings indicated that durian shells have a high potential for the adsorption of C.I BB16 in aqueous solution.


2018 ◽  
Vol 382 ◽  
pp. 307-311 ◽  
Author(s):  
Jumaeri ◽  
Sri Juari Santosa ◽  
Sutarno

Adsorption of anionic dyes Congo Red (CR) on HDTMA surfactant-modified zeolite A has been studied. The zeolite A, which is synthesized from coal fly ash, was modified with surfactant hexdeciltrimethylammonium bromide (HDTMA-Br) as much as 200% cation exchange capacity (CEC) of the zeolite. The effect of pH, contact time and initial concentration on the CR adsorption has been evaluated.The adsorption was carried out in a batch reactor at various pH, contact time and initial concentration on the given temperature. The amount CR adsorption varies as a function of pH, contact time and initial concentration of solution. Adsorption model of Langmuir and Freundlich from empirical data is used for this experiment. The Langmuir isotherm is more suitable for this adsorption. The experimental data fulfilled pseudo second-order kinetic models. The surfactant-modified zeolite A is more effective than zeolite A without modified on the adsorption of CR in aqueous solution.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p &lt; 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


Sign in / Sign up

Export Citation Format

Share Document