Design and Operation of a Pilot-Scale Biological Phosphate Removal Plant at Central Contra Costa Sanitary District

1983 ◽  
Vol 15 (3-4) ◽  
pp. 153-179 ◽  
Author(s):  
J Miyamoto-Mills ◽  
J Larson ◽  
D Jenkins ◽  
W Owen

A pilot plant incorporating side-stream biological phosphate (P) removal was operated at the Central Contra Costa Sanitary District (CCCSD), CA, USA wastewater treatment plant from Apr-Dec 1981. Secondary effluent total P< 1 mg P/L was obtained consistently both when the plant nitrified and did not nitrify. The P-stripper usually employed elutriation of solids with primary effluent, however operation with no elutriation was tested briefly. A minimum elutriation rate was required for successful P removal in this study. Uptake and release of Mg2+ and K+ accompanied P uptake and release. Bulking at low F/M was controlled by introducing two small-volume compartments at the head end of the aeration basin.

2011 ◽  
Vol 64 (12) ◽  
pp. 2352-2361 ◽  
Author(s):  
A. Luczkiewicz ◽  
K. Jankowska ◽  
R. Bray ◽  
E. Kulbat ◽  
B. Quant ◽  
...  

The main objective of the study was to assess the potential of three systems (UV irradiation, ozonation, and micro/ultrafiltration) operated in a pilot scale in removal of antimicrobial-resistant fecal bacteria from secondary effluent of the local wastewater treatment plant (700,000 population equivalent). The effectiveness of the processes was analysed using the removal ratio of fecal indicators (Escherichia coli and Enterococcus spp.). The susceptibility of fecal indicators to antimicrobial agents important in human therapy was examined. Resistance to nitrofurantoin and erythromycin was common among enterococci and followed by resistance to fluoroquinolones and tetracycline. Resistance to high-level aminoglycosides and glycopeptides was also observed. E. coli isolates were most frequently resistant to penicillins and tetracycline. The extended-spectrum beta-lactamase-producing E. coli was detected once, after ozonation. Substantial attention should be paid to the E. coli and enterococci resistant to three or more chemical classes of antimicrobials (MAR), which in general constituted up to 15 and 49% of the tested isolates, respectively. Although the applied methods were effective in elimination of fecal indicators (removal efficiency up to 99.99%), special attention has to be paid to the application of sufficient disinfection and operation conditions to avoid selection of antimicrobial resistant bacteria.


1983 ◽  
Vol 15 (3-4) ◽  
pp. 15-41 ◽  
Author(s):  
G v R Marais ◽  
R E Loewenthal ◽  
I P Siebritz

The paper briefly reviews the development of the biological excess removal of phosphorus in the activated sludge process, from 1959 when it was first observed to the present. It concludes by proposing, tentatively, a biochemical mechanism whereby excess P uptake and release can be explained.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 61-67 ◽  
Author(s):  
S-Y. Kim ◽  
P.M. Geary

Two species of macrophytes, Baumea articulata and Schoenoplectus mucronatus, were examined for their capacity to remove phosphorus under nutrient-rich conditions. Forty large bucket systems with the two different species growing in two types of substrate received artificial wastewaters for nine months, simulating a constructed wetland (CW) under high loading conditions. Half of the plants growing in the topsoil and gravel substrates were periodically harvested whereas the other half remained intact. Plant tissue and substrate samples were regularly analysed to determine their phosphorus concentrations. With respect to phosphorus uptake and removal, the Schoenoplectus in the topsoil medium performed better than the Baumea. Biomass harvesting enhanced P uptake in the Schoenoplectus, however the effect was not significant enough to make an improvement on the overall P removal, due to the slow recovery of plants and regrowth of biomass after harvesting. From P partitioning, it was found that the topsoil medium was the major P pool, storing most of total P present in the system. Plant parts contributed only minor storage with approximately half of that P stored below ground in the plant roots. The overall net effect of harvesting plant biomass was to only remove less than 5% of total phosphorus present in the system.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1085 ◽  
Author(s):  
Fan Liu ◽  
Nadia Nord ◽  
Kai Bester ◽  
Jes Vollertsen

Microplastic (MP) pollution is a global environmental issue, and traditionally treated wastewater has been identified as a source of land-based microplastics into the aquatic environment. This study evaluated the performance of a pilot-scale biofilter to polish wastewater treatment plant (WWTP) effluent before it enters the environment. The filter was divided into four zones, allowing the concentration of microplastics to be followed through the filter. It was fed with secondary effluent from a conventional WWTP in Denmark. The raw effluent from the WWTP contained 917 items m−3 which corresponded to a mass concentration of 24.8 µg m−3. After the top layer of the biofilter, the concentration had decreased to a median value of 197 item m−3 and 2.8 µg m−3, indicating an overall removal efficiency of 79% in terms of particle number and 89% in terms of particle mass. We also observed a tendency that MP of larger size and higher particle mass were more likely to be retained. After the last filtration zone, all MP larger than 100 µm had been removed. The results of this study demonstrate that biofilters are able to lower the MP abundance in treated wastewater significantly, but a complete removal is not ensured, hence some MP, particularly small-sized ones, can still be discharged into the receiving environment.


2001 ◽  
Vol 44 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Q. Wu ◽  
P. L. Bishop ◽  
T. C. Keener ◽  
J. Stallard ◽  
L. Stile

Anaerobic sludge digestion is a widely adopted process for sludge stabilization. Phosphate removal from anaerobic supernatant is necessary to limit the phosphate returned to the head of the treatment plant, thereby improving the overall treatment efficiency. In this study, magnesium hydroxide (Mg(OH)2) was used to improve the sludge digestion efficiency and to remove phosphorus from anaerobic supernatant. The anaerobic sludge digestion experiment was conducted at a pilot scale, and the results showed that applying Mg(OH)2 to anaerobic sludge digester resulted in a larger reduction in SS and COD, a higher biogas production rate, a lower level of phosphate and ammonia nitrogen concentrations in the sludge supernatant and an improved sludge dewaterability. Research results at both lab scale and pilot scale on phosphorus removal from anaerobic supernatant using Mg(OH)2 showed that a high removal of phosphorus can be achieved through the addition of Mg(OH)2. The required reaction time depends on the initial phosphorus concentration and the Mg(OH)2 dosage.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2883
Author(s):  
Rasa Vismontienė ◽  
Arvydas Povilaitis

Biochar has received increased attention in environmental applications in recent years. Therefore, three pilot-scale denitrifying bioreactors, one filled with woodchips only and the other two enriched with 10% and 20% by volume of biochar from deciduous wood, were tested under field conditions for the removal of nitrate (NO3-N) and phosphate (PO4-P) from tile drainage water in Lithuania over a 3-year period. The experiment showed the possibility to improve NO3-N removal by incorporating 20% biochar into woodchips. Compared to the woodchips only and woodchips amended with 10% biochar, the NO3-N removal effect was particularly higher at temperatures below 10.0 °C. The results also revealed that woodchips alone can be a suitable medium for PO4-P removal, while the amendment of biochar to woodchips (regardless of 10% or 20%) can lead to large releases of PO4-P and other elements. Due to the potential adverse effects, the use of biochar in woodchip bioreactors has proven to be very limited and complicated. The experiment highlighted the need to determine the retention capacity of biochar for relevant substances depending on the feedstock and its physical and chemical properties before using it in denitrifying bioreactors.


2019 ◽  
Vol 3 (2) ◽  
pp. 53 ◽  
Author(s):  
N. Evelin Paucar ◽  
IIho Kim ◽  
Hiroaki Tanaka ◽  
Chikashi Sato

A municipal wastewater treatment plant (WWTP) is a melting pot of numerous pharmaceuticals and personal care products (PPCPs) together with many other substances. The removal of PPCPs using advanced oxidation processes within a WWTP is one way to reduce the amount of PPCPs that potentially enter an aquatic environment. The aim of this study was to examine the effectiveness of the ozone (O3)/UV treatment process, especially, the effects of O3 dose and reaction time, on the removal of PPCPs in the secondary effluent of a WWTP. Experiments were conducted using a pilot-scale treatment process that consisted of two flow-through reactors connected in series. Each reactor was equipped with three 65 W lamps (UV65W). The experimental variables were ozone dosage (1, 2, 3, 4, and 6 mg L−1) and hydraulic retention time (HRT; 5 and 10 min). On the basis of the PPCP concentrations after O3/UV65W treatment and their limit of detection (LOD), 38 PPCPs detected in the secondary effluent were classified into 5 groups ranging from the category of “sensitive” to O3/UV65W or “unstable” in the O3/UV65W process to the category of “insensitive” to O3/UV65W or “very stable” in the O3/UV65W process.


2003 ◽  
Vol 47 (9) ◽  
pp. 37-43 ◽  
Author(s):  
D. Simpson ◽  
J. Jacangelo ◽  
P. Loughran ◽  
C. McIlroy

Watercare's Mangere Wastewater Treatment Plant in Auckland, New Zealand treats sewage from a population equivalent of approximately 1,000,000. The treatment plant is currently undergoing a major upgrade, and as a part of this upgrade the largest UV disinfection plant in the world (at the time of award of the contract) is being constructed. Pilot scale investigations were undertaken at a purpose built facility. The pilot plant employed secondary treatment, sand filtration, UV disinfection and a number of low pressure membrane systems. Investigations at the facility focussed on attempting to identify relationships between potential surrogate indicator organisms (including enterococci, faecal coliforms, Clostridium perfringens spores and F-specific bacteriophage) and pathogenic organisms (including culturable human enteric viruses, bacterial pathogens and parasites). The aim of the study was to identify a suitable indicator organism and an associated effluent concentration that would ensure that an acceptable level of public health risk was maintained in the environment. The results showed that no suitable surrogate indicator organism could be found. However the results did indicate that a two tiered operating strategy, based on the concentration of enteroviruses present in raw sewage and an appropriate UV dose, would ensure that an acceptable level of public health risk was maintained in the environment.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 309-310 ◽  
Author(s):  
W. Maier ◽  
P. Kainrath ◽  
Kh Krauth ◽  
R. Wagner

Enhanced biological phosphorus removal from domestic sewage was investigated in a single-stage activated sludge treatment plant with pre-denitrification operated in a continuous process. In 10 different experimental periods the influence of varying composition of the influent, varying systems of the pilot scale unit (with and without anaerobic basin), varying retention times in the different basins and varying sludge loads were investigated. Results of the experiments can be summarized as follows: the nutrient situation and especially the P/BOD5 and N/BOD5 ratios, retention time in the final clarifier, and organic sludge load plus the desired degree of nitrification have essential influence on the process and P removal efficiency. The conclusions for the pilot scale process are discussed.


1994 ◽  
Vol 30 (3) ◽  
pp. 119-128
Author(s):  
Elemér Dobolyi ◽  
Imre Takács

An existing rendering plant wastewater treatment facility has to be upgraded to meet the newly set British and more stringent EC effluent standards. After detailed analysis it turned out, that the existing treatment plant cannot be upgraded, a new plant has to be built. The rendering plant processes slaughterhouse wastes. The wastewater contains easily biodegradable organic substances, mainly organic acids, organic bonded nitrogen and ammonia. According to the new effluent standards the main task, besides the organic removal was the complete removal of nitrogen. The aim of this study was to find out the best available technology and the basic wastewater design data. For this purpose, on site pilot scale experiments were carried out. In several test runs the influent BOD and T K N have varied of between 1400-5500 and 460-1120 mg/l, respectively. Based on the experimental results, single-sludge nitrification-denitrification technology was selected for the full scale treatment plant. The plant was extended by chemical phosphate removal applying the post-precipitation method. In addition to the experimental schedule, a mathematical model of the plant was developed for two purposes.– to verify the applicability of the general activated sludge model under high concentration influent conditions, and– to generalize experimental results and provide a tool to predict plant performance under full scale conditions. On the basis of successful pilot plant experiments and model calibration, full scale plant design parameters were determined and presented. The full scale plant is under construction.


Sign in / Sign up

Export Citation Format

Share Document