Optimisation and Uprating of Activated Sludge Plants by Efficient Process Design

1988 ◽  
Vol 20 (4-5) ◽  
pp. 121-132 ◽  
Author(s):  
B. Chambers ◽  
G. L. Jones

Requirements to improve effluent quality and reduce operating costs at existing activated sludge plants in the UK have led to the development of an accurate mathematical model of the process which can be used for full-scale design. The WRc Activated Sludge Model has been developed over a number of years and is based on the concept of describing the kinetics of BOD removal by including a Monod term for growth and a Michaelis-Menten term for enzymatic activity. Since the first formulation of the model, further equations have been added which describe the use of oxygen and nitrate as electron acceptors for the conversion of BOD. The model equations can be used to predict the performance of most configurations of the activated sludge process by using the ‘tanks in series' concept to describe aeration tank mixing characteristics. Solutions to the equations are easily obtained by standard numerical integration techniques using a computer. The software has been written in such a way that the model can be used interactively by a plant designer. Results obtained using the mathematical model have been used to redesign several full-scale activated sludge plants in the UK. In some cases, it has been possible to reduce the energy costs for aeration by 40% whilst maintaining effluent quality by accurately matching the supply of oxygen to the spatially-varying oxygen demand in plug-flow aeration tanks. Bulking sludge problems have also been solved by the conversion of completely-mixed aeration tanks to plug-flow aeration tanks with complementary redesign of the aeration system.

2014 ◽  
Vol 71 (4) ◽  
pp. 545-552 ◽  
Author(s):  
Hua Li ◽  
Jia Zhu ◽  
James J Flamming ◽  
Jack O'Connell ◽  
Michael Shrader

Many wastewater treatment plants in the USA, which were originally designed as secondary treatment systems with no or partial nitrification requirements, are facing increased flows, loads, and more stringent ammonia discharge limits. Plant expansion is often not cost-effective due to either high construction costs or lack of land. Under these circumstances, integrated fixed-film activated sludge (IFAS) systems using both suspended growth and biofilms that grow attached to a fixed plastic structured sheet media are found to be a viable solution for solving the challenges. Multiple plants have been retrofitted with such IFAS systems in the past few years. The system has proven to be efficient and reliable in achieving not only consistent nitrification, but also enhanced bio-chemical oxygen demand removal and sludge settling characteristics. This paper presents long-term practical experiences with the IFAS system design, operation and maintenance, and performance for three full-scale plants with distinct processes; that is, a trickling filter/solids contact process, a conventional plug flow activated sludge process and an extended aeration process.


2010 ◽  
Vol 61 (9) ◽  
pp. 2169-2175 ◽  
Author(s):  
A. Thornton ◽  
N. Sunner ◽  
M. Haeck

The use of the activated sludge process (ASP) for the nitrification/denitrification of wastewaters is commonplace throughout the UK and many other parts of the industrial world. Associated with this process are significant costs arising from aeration requirements and for selected sites, the need to provide an external carbon source. These costs can constitute up to of 50% of the total running cost of the whole plant and as such, any effort to reduce them could realise significant benefits. This paper investigates the use of real time control (RTC) using online sensors and control algorithms to optimise the operation of the ASP, leading to greater efficiency and sustainability. Trials were undertaken at full scale to assess the benefit of such a system at a 250,000 population equivalent (PE) works on the south coast of the UK, using Activated sludge model No.1 (ASM 1) as a basis for the control system. Initial results indicate that it is possible to significantly reduce both aeration and chemical consumption costs whilst still delivering the required effluent quality. Over the trial period the aeration requirements were consistently reduced by 20% whereas, a reduction in methanol consumption of in excess of 50% was observed.


1993 ◽  
Vol 28 (10) ◽  
pp. 251-258 ◽  
Author(s):  
B. Chambers

In the UK there are about 7500 sewage treatment works of which 85% serve populations of less than 5000. Many of the smaller works do not comply with effluent quality standards and options for improving treatment are being pursued by many water companies. WRc have developed designs for packaged activated sludge systems to serve populations in the range 100 - 1000 persons. A detailed design has been completed for a population equivalent of about 600. Target effluent quality is 15:20:5 mg/l of BOD, SS and ammonia nitrogen respectively on a 95 percentile basis. The activated sludge system is designed to operate as a batch process with aeration and sludge settlement both occurring in the same tank. Batch operated activated sludge plants are known to produce sludges with good settling properties providing the influent wastewater is admitted into the aeration tank in controlled manner. Therefore a specially designed holding tank has been included as the first stage in the treatment sequence. All process tanks are specified as glass-coated steel installed on a flat concrete base. Target construction cost for 600 population is ₤350 per capita.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 525-528 ◽  
Author(s):  
K. Hladikova ◽  
I. Ruzickova ◽  
P. Klucova ◽  
J. Wanner

This paper examines how the physicochemical characteristics of the solids are related to foam formation and describes how the foaming potential of full-scale plants can be assessed. The relations among activated sludge and biological foam hydrophobicity, scum index, aeration tank cover and filamentous population are evaluated. Individual parameter comparison reveals the scumming intensity can be estimated only on the assumption that foams is already established. None of the above mentioned characteristics can be reliably used to predict the foaming episodes at wastewater treatment plants.


2002 ◽  
Vol 46 (9) ◽  
pp. 229-236 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
H. Satoh ◽  
T. Mino

A coarse pore filter can be applied inside the aeration tank instead of sedimentation tank for liquid separation from the sludge. It has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study was to investigate the effect of important operational parameters such as flux, aeration intensity, and solid retention time (SRT) on the performance of the coarse pore filtration activated sludge process. The effect of these parameters was studied in laboratory scale experiments. It was found that the flux had a significant role in the effluent quality of this system. The effluent SS and turbidity were not changed significantly at different aeration intensities. Three SRTs, 10, 30 and longer days (without excess sludge) were used for three reactors to check the effect of this parameter on the system performance. The results of the reactors with SRTs about 10 and 30 days have shown very good effluent quality without any filter clogging for more than 4 months operation. For the reactor with long SRT, the filter clogging was observed after about 80 days of operation, which caused the increase of the operation pressure and deterioration in the effluent quality for a few days.


2019 ◽  
Vol 79 (6) ◽  
pp. 1081-1091 ◽  
Author(s):  
V. F. Velho ◽  
G. Andreottola ◽  
P. Foladori ◽  
R. H. R. Costa

Abstract A full-scale anaerobic side-stream reactor (ASSR) for sludge reduction was monitored in terms of sludge production and compared with the previous conventional activated sludge configuration (CAS). A detailed solid mass balance was calculated on the whole full-scale plant to estimate the sludge reduction associated with the ASSR. The activity of the biomass, which undergoes alternation of aerobic and anaerobic conditions, was investigated by the respirometric test. The ASSR promoted a reduction of heterotrophic biomass activity and the substrate consumption rate in the activated sludge implemented with ASSR (AS + ASSR) was 36% smaller than in the CAS period. The solid mass balance indicated a sludge reduction of 28%. During the 270-day operation, the observed sludge yield passed from 0.438 kgTSS/kgCOD in the CAS to 0.315 in the AS + ASSR configuration. The solubilization of chemical oxygen demand (COD), NH4+-N and orthophosphate were verified under anaerobic conditions. The results suggest that the possible mechanisms of sludge reduction were the increase of the system sludge retention time (SRT) by ASSR addition, and the reduction in heterotrophic biomass activity added to the organic compounds' hydrolysis.


1990 ◽  
Vol 22 (9) ◽  
pp. 249-254 ◽  
Author(s):  
F. Dilek Çetin ◽  
Gülerman Sürücü

In efficient and economical treatment of wastewaters,the settleability of activated sludge is of prime importance. Efficient settlement in the secondary sedimentation tank is required, both to keep the desired effluent quality and to sustain the necessary amount of microorganisms in the aeration tank. On the other hand, the settleability of microorganisms in the secondary clarifier is very dependent on the physiological and biochemical nature of activated sludge flocs, which are determined by the conditions of the aeration tank. In this research, effects of temperature and pH of aeration basin on settleability of activated sludge were studied. Settleability was measured by zone settling velocity and sludge volume index (SVI). Five different temperatures and four different pH values were operated in the aeration basin. It was found that the settleability of activated sludge is greatly affected by these two parameters.


2018 ◽  
Vol 78 (10) ◽  
pp. 2104-2112
Author(s):  
Mateusz Sobczyk ◽  
Agnieszka Pajdak-Stós ◽  
Edyta Fiałkowska ◽  
Wioleta Kocerba-Soroka ◽  
Joanna Starzycka-Giża ◽  
...  

Abstract Biological microscopic analysis is a popular method employed in wastewater treatment plants worldwide for evaluating activated sludge condition. However, many operators still have reservations regarding its reliability. In this study, we evaluated and compared two methods of microscopic sludge investigation: the sludge index (SI) and the Eikelboom–van Buijsen method (EB). We investigated 79 activated sludge samples from nine treatment plants located in southern Poland over a 1-year period. For each sample, sludge volume index values were calculated and compared with the results of evaluation made on the basis of microscopic analysis. Additionally, the effluent quality was analysed in 45 of 79 cases, including investigation of suspended solids, biochemical oxygen demand, chemical oxygen demand, total nitrogen and total phosphorous. The sign test and Wilcoxon matched pairs test showed that a significant difference existed between the two investigated methods. General conclusions from both methods do not provide reliable information concerning nitrogen and phosphorus removal. The EB method had a tendency to be more conservative in its general conclusions than the SI method. Both are highly reliable for estimating activated sludge quality and solid separation properties.


Sign in / Sign up

Export Citation Format

Share Document