A Pilot-Plant Study to Salvage a Full-Scale Treatment Plant

1992 ◽  
Vol 25 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Y. H. Yu ◽  
K. S. L. Lo

Kwei-Shan Wastewater Treatment Plant is the second oldest treatment plant ever designed and operated in Taiwan, to treat the combined industrial wastewater collected from various kinds of factories located in Kwei-Shan Industrial Park. From the beginning the treatment plant has been suffering from influents containing a spectrum of various pollutants harmful to the activated-sludge system of the plant. Extreme pH measurements (1.4-12.0), jumpy organic contents (COD 104-6660 mg/l), high metal concentrations (Cu up to 19 mg/l, Zn up to 37 mg/l), and high grease concentrations (up to 470 mg/l) were unbelievably found in tne plant influents, while a traditional plain primary settling tank was the only shield to protect the aeration basin from damage. In a dilemma like this, a pilot-plant study was undertaken to save the efficiency of the existing biological treatment plant from those various fatal influent constituents. A flow equalization tank and a chemical treatment unit were first built to damp out pH and COD variations, Ca(OH)2 was added to remove the toxic metals as well as part of the grease. The effluent after the above treatment was then neutralized and sent to the downscaled activated sludge system containing one aeration tank and one settling tank. The results indicated that equalization and chemical precipitation by using the existing space of the roughing filter and the sedimentation tank could produce much safer influents to the activated sludge system.

1991 ◽  
Vol 26 (2) ◽  
pp. 223-242
Author(s):  
Oswaldo Moreno ◽  
Roland Leduc ◽  
Ronald Gehr

Abstract A computerized algorithm is developed for design and analysis of the steady-state step-feed activated sludge system with secondary sedimentation. It takes into account both the biodegradation occurring in the aeration tank and the solids-liquid separation process. The biodegradation model considers an aeration tank with any number (n) of stages. The algorithm also deals with the effluent clarification and sludge thickening processes that may occur in the sedimentation tank, and accounts for the interactions occurring between the aeration tank and the final settling tank. The resulting system of nonlinear equations is solved by an iterative procedure. A computer program (STEPF) is used to obtain design results, and general conclusions are drawn.


1973 ◽  
Vol 8 (1) ◽  
pp. 36-67 ◽  
Author(s):  
Deh Yuan Hsu

Abstract For finding the practicability of discharging water treatment plant sludge into the municipal sewer, the effects of synthetic aluminum hydroxide floc on several major units in an activated sludge wastewater treatment process were studied. It was found that the crucial effects were the increase in sludge production, either in the primary settling tank or in the secondary settling tank, and the retardation of the digestibility of the wasted sludge. The treatment efficiency, in terms of the quality of the treated wastewater, however, was improved. No toxic effects were found in the study of the functions of organic matter removal and the nitrification of activated sludge with the addition of aluminium hydroxide up to 300 mg Al/1 to the mixed liquor. The dewatering property of the wastewater sludge was improved with the addition of this chemical floc. Two processes are suggested. One is to discharge alum. sludge into the sewer at a suitable rate and the other is to discharge the water treatment wastes into a thickener in the wastewater treatment plant. The concentrated underflow can be mixed with the regular digested sludge for dewatering while the supernatant can be discharged either to the primary settling tank or to the aeration tank.


1984 ◽  
Vol 16 (12) ◽  
pp. 343-356 ◽  
Author(s):  
C F Seyfried ◽  
H Bode ◽  
M Saake

Pectin wastes are treated in a full scale anaerobic treatment plant which was built after extensive pilot test studies had been performed. The process used is an anaerobic activated sludge system. Between the reactor and the settling tank the mixed liquor passes through a vacuum degasser. This results in a proper settling of the return sludge. The efficiency of treatment is shown by a COD removal of 38 % and a BOD5 removal of 90 %.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 155-158 ◽  
Author(s):  
E. Egemen ◽  
J. Corpening ◽  
J. Padilla ◽  
R. Brennan ◽  
N. Nirmalakhandan

The ultimate disposal of biosolids has been and continues to be one of the most expensive problems faced by wastewater utilities. The objective of this research is to develop a process configuration for reducing the waste sludge generation in an activated sludge plant by promoting cryptic growth conditions (i.e., biomass growth on intracellular products). For this purpose, excess biosolids from a continuous flow activated sludge system were solubilized using ozone as the cell lysis agent, and then returned to the aeration tank. It is hypothesized that growth under such cryptic conditions will result in low net microbial yields, and hence, minimal net solids wastage. The results of these preliminary studies indicate that the proposed process configuration has the potential to reduce the waste sludge production by 40% to 60%.


2005 ◽  
Vol 52 (4) ◽  
pp. 91-98 ◽  
Author(s):  
C. Lubello ◽  
R. Gori

Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge+clariflocculation+ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.


2016 ◽  
Vol 21 (1-2) ◽  
pp. 117-123 ◽  
Author(s):  
Alicja Machnicka ◽  
Klaudiusz Grübel

AbstractPhosphorus removal in wastewater treatment plant is carried out by chemical precipitation, advanced biological treatment or a combination of both. One of the biggest problems with high concentration of phosphorus in water environment is eutrophication. Activated sludge flocs have a heterogeneous structure, which consist of a variety of microorganisms. Filamentous bacteria are normally present in the activated sludge and have ability to assimilation of phosphorus. In this study phosphorus accumulation by isolated filamentous bacteria from activated sludge foam was present.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 5-12 ◽  
Author(s):  
E.v. Münch ◽  
K. Barr ◽  
S. Watts ◽  
J. Keller

The Oxley Creek wastewater treatment plant is a conventional 185,000 EP BOD removal activated sludge plant that is to be upgraded for nitrogen removal to protect its receiving water bodies, the Brisbane River and Moreton Bay. Suspended carrier technology is one possible way of upgrading this activated sludge wastewater treatment plant for nitrogen removal. Freely moving plastic media is added to the aeration zone, providing a growth platform for nitrifying bacteria and increasing the effective solids residence time (SRT). This paper presents the results from operating a pilot plant for 7 months at the Oxley Creek WWTP in Brisbane, Australia. Natrix Major 12/12 plastic media, developed by ANOX (Lund, Sweden), was trialed in the pilot plant. The pilot plant was operated with a mixed liquor suspended solids concentration of 1220 mg/L and a total hydraulic residence time of 5.4 hours, similar to the operating conditions in the full-scale Stage 1&2 works at the Oxley Creek WWTP. The plastic carriers were suspended in the last third of the bioreactor volume, which was aerated to a DO setpoint of 4.0 mg/L. The first third of the bioreactor volume was made anoxic and the second third served for carbon removal, being aerated to a DO setpoint of 0.5 mg/L. The results from the pilot plant indicate that an average effluent total inorganic nitrogen concentration (ammonia-N plus NOx−N) of less than 12 mg/L is possible. However, the effluent ammonia concentrations from the pilot plant showed large weekly fluctuations due to the intermittent operation of the sludge dewatering centrifuge returning significant ammonia loads to the plant on three days of the week. Optimising denitrification was carried out by lowering the DO concentration in the influent and in the carbon removal reactor. The results from the pilot plant study show that the Oxley Creek WWTP could be upgraded for nitrogen removal without additional tankage, using suspended carrier technology.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
K. Klinksieg ◽  
T. Dockhorn ◽  
N. Dichtl

Full-scale and lab-scale research experiments were conducted to determine the phosphorous precipitation efficiency of iron hydroxide sludge from drinking water treatment. During full-scale investigations at a wastewater treatment plant, ferric sludge was added to the inflow of the primary settling tank in a first experimental phase and to the inflow of the aeration tank in a second phase. In the outflow of the mechanical stage and in the outflow of the biological stage, a reduction of the PO4-P concentrations could be observed. The concentration of COD, the SVI and the filament abundance were not changed significantly by adding the ferric sludge to the wastewater treatment plant. In lab tests, improved precipitation efficiency of the ferric sludge could be achieved by using anaerobic conditions and acid pulping. The research showed that the wastewater treatment process can benefit from the reuse of ferric sludge from drinking waterworks and that this also presents an inexpensive recycling option for these sludges.


1994 ◽  
Vol 30 (4) ◽  
pp. 181-190 ◽  
Author(s):  
René Dupont ◽  
Ole Sinkjær

The objective of the work presented is to demonstrate how computer based models can be used to improve the effluent quality from wastewater treatment plants by optimisation of the operation. The investigation was carried out in connection with pilot plant investigations at Damhusllen Wastewater Treatment Plant in order to establish the design basis for upgrading the treatment plants in the city of Copenhagen. Calibration of the model was done with thorough characterisation of the wastewater and the activated sludge as the primary calibration tool. Special attention was paid to the nitrification process, which by previous investigations was shown to be occasionally inhibited. Model constants for the nitrification process were detennined from experiments. Default constants were used for nearly all other constants. The pilot plant was optimized with the calibrated model. Different operational strategies for improvement of the denitrification process were tested. The denitrification process was operated relatively poorly at the time for the optimisation. The calibration showed that it was possible to calibrate the model using the characterization of the wastewater and the activated sludge as the primary calibration tool. Further it was shown that the calihrated model could be used as a tool for optimising the operation of the pilot plant. The suggested operation correlated well with the practical realisable operation.


1984 ◽  
Vol 16 (12) ◽  
pp. 357-363
Author(s):  
H J Dönges ◽  
K H Kalbskopf

At the IAWPRC Workshop in Vienna in 1971, a report was aiven on pilot plant tests carried out in respect of heat treatment and subsequent dewatering of activated surplus sludge, as well as on the anaerobic treatment of the filtrate liquor yielded, for the planned Emscher Mouth Treatment Plant. After more than five years of onerational experience the results achieved with this plant are now renorted.


Sign in / Sign up

Export Citation Format

Share Document