Nitrification Inhibition - A Source Identification Method for Combined Municipal and/or Industrial Wastewater Treatment Plants

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1135-1146 ◽  
Author(s):  
H. Kroiss ◽  
P. Schweighofer ◽  
W. Frey ◽  
N. Matsche

Inhibition of nitrification at combined municipal and/or industrial treatment plants can cause serve problems in regard to the future low effluent standards for ammonia nitrogen. As inhibition problems often occur only for limited periods and are caused by different substances it is very difficult to find the sources of these substances within the sewer system. Using a two step strategy based on a respiration test it is possible to locate these sources within a short time and to concentrate then on the abatement of the inhibiting wastewaters. The method of the respiration test was developed and the relationship between dilution and inhibition could be described by a new mathematical inhibition model. The method was applied at an Austrian city (Linz) with more than 50% wastewater load coming from industry during the design period for the extension of the existing plant (800 000 PE).

2000 ◽  
Vol 41 (9) ◽  
pp. 89-95 ◽  
Author(s):  
G. Ladiges ◽  
N-P. Bertram ◽  
R. Otterpohl

The Hamburger Stadtentwässerung (HSE) is planning to take on a further approximately 250,000 PE in addition to the 1.85 m PE already served by its combined wastewater treatment plants at Köhlbrandhöft/Dradenau. To cope with the increased load, a concept for the extension of the plants had to be developed. Various concepts were compared and evaluated using a dynamic computer simulation. The very wide-ranging simulation study showed that the required effluent standards can still be achieved after the volume of the sludge liquor storage capacity has been increased. As many concepts had been assessed in detail, the final solution chosen was considerably less expensive than if the wastewater treatment plants had been extended in a traditional manner.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 33-38 ◽  
Author(s):  
R. Pujol ◽  
M. Hamon ◽  
X. Kandel ◽  
H. Lemmel

More than fifty wastewater treatment plants worldwide (representing several millions p.e) are equipped with up-flow biofiltration reactors (BioforR). Their range of application encompasses municipal as well as industrial wastewater. A summary of the results achieved in a large number of plants is presented, accompanied by a description of the operating parameters and the treatment limitations with regard to various pollutants (C, N, P). The separation of functions into specific reactors combined with optimized wash conditions guarantees high treatment efficiency.


2003 ◽  
Vol 48 (1) ◽  
pp. 191-198 ◽  
Author(s):  
T.K. Chen ◽  
C.H. Ni ◽  
J.N. Chen ◽  
J. Lin

The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1469 ◽  
Author(s):  
Zahra Zahra ◽  
Zunaira Habib ◽  
Sujin Chung ◽  
Mohsin Ali Badshah

The tremendous increase in the production and consumption of titanium dioxide (TiO2) nanoparticles (NPs) in numerous industrial products and applications has augmented the need to understand their role in wastewater treatment technologies. Likewise, the deleterious effects of wastewater on the environment and natural resources have compelled researchers to find out most suitable, economical and environment friendly approaches for its treatment. In this context, the use of TiO2 NPs as the representative of photocatalytic technology for industrial wastewater treatment is coming to the horizon. For centuries, the use of industrial wastewater to feed agriculture land has been a common practice across the globe and the sewage sludge generated from wastewater treatment plants is also used as fertilizer in agricultural soils. Therefore, it is necessary to be aware of possible exposure pathways of these NPs, especially in the perspective of wastewater treatment and their impacts on the agro-environment. This review highlights the potential exposure route of TiO2 NPs from industrial applications to wastewater treatment and its impacts on the agro-environment. Key elements of the review present the recent developments of TiO2 NPs in two main sectors including wastewater treatment and the agro-environment along with their potential exposure pathways. Furthermore, the direct exposure routes of these NPs from production to end-user consumption until their end phase needs to be studied in detail and optimization of their suitable applications and controlled use to ensure environmental safety.


AIHAJ ◽  
1994 ◽  
Vol 55 (11) ◽  
pp. 1055-1060 ◽  
Author(s):  
Sirpa Laitinen ◽  
Juhani Kangas ◽  
Marjut Kotimaa ◽  
Jyrki Liesivuori ◽  
Pertti J. Martikainen ◽  
...  

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1125-1134 ◽  
Author(s):  
A. Durchschlag ◽  
L. Härtel ◽  
P. Hartwig ◽  
M. Kaselow ◽  
D. Kollatsch ◽  
...  

Wastewater treatment plants, combined sewerage, catchment areas, storage tanks and overflows have to be regarded together. Stormwater runoff results in discharges at combined sewer overflows and higher pollutant loads in the effluent of the treatment plants. Characteristics of catchment areas and sewerage, number and capacity of storage tanks and overflows determine the characteristics of the combined water influent of the treatment plant. The plant has to cope with a higher hydraulic load and often with higher pollutant loads at the beginning of combined water flows. Some of the effects are displacement of sludge to the secondary clarifier, higher solids concentrations in the effluent and high loads of ammonia nitrogen for the nitrifying reactor. To decide on bigger stormwater storages or improvement of the treatment plant all effects in the whole system have to be considered. This can only be done with dynamic models, although simulation of combined water flows still have to be improved.


Sign in / Sign up

Export Citation Format

Share Document