Joint Consideration of Combined Sewerage and Wastewater Treatment Plants

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1125-1134 ◽  
Author(s):  
A. Durchschlag ◽  
L. Härtel ◽  
P. Hartwig ◽  
M. Kaselow ◽  
D. Kollatsch ◽  
...  

Wastewater treatment plants, combined sewerage, catchment areas, storage tanks and overflows have to be regarded together. Stormwater runoff results in discharges at combined sewer overflows and higher pollutant loads in the effluent of the treatment plants. Characteristics of catchment areas and sewerage, number and capacity of storage tanks and overflows determine the characteristics of the combined water influent of the treatment plant. The plant has to cope with a higher hydraulic load and often with higher pollutant loads at the beginning of combined water flows. Some of the effects are displacement of sludge to the secondary clarifier, higher solids concentrations in the effluent and high loads of ammonia nitrogen for the nitrifying reactor. To decide on bigger stormwater storages or improvement of the treatment plant all effects in the whole system have to be considered. This can only be done with dynamic models, although simulation of combined water flows still have to be improved.

2012 ◽  
Vol 65 (8) ◽  
pp. 1428-1434 ◽  
Author(s):  
L. Vacková ◽  
R. Stloukal ◽  
J. Wanner

Large wastewater treatment plants have to deal not only with the influent wastewater, but also with the highly concentrated reject water coming from anaerobic digestion. The aim of this work was to verify the suitability of using encapsulated nitrifiers in polyvinyl alcohol carrier (so called Lentikats Biocatalyst) at temperatures between 5 and 30 °C. For laboratory nitrification batch tests synthetic wastewater with ammonia nitrogen (Namon) concentration 10–800 mg L−1 was used. The system has been proved to operate at the temperature of 10 °C, but not at 5 °C. It was found that the highest specific nitrification rates were observed at 30 °C and with ammonia nitrogen concentrations above 250 mg L−1, which means that separate treatment of reject water by using encapsulated biomass seems to be an effective tool for wastewater treatment plant optimization.


2018 ◽  
Vol 25 (4) ◽  
pp. 619-630 ◽  
Author(s):  
Grażyna Sakson ◽  
Marek Zawilski ◽  
Agnieszka Brzezińska

Abstract Combined sewer systems in cities are increasingly equipped with additional storage facilities or other installations necessary for keeping the wastewater treatment plants from overloading during wet weather and reducing combined sewer overflows into receiving waters. Effective methods for reducing such negative phenomena include the temporary storage of wet weather flow in an end-of-pipe separate tank or in a sewer system. In this paper, four scenarios of wastewater storage for the Group Wastewater Treatment Plant (GWWTP) in Lodz (Poland) have been analysed: a storage in a separate single tank located in GWWTP, a storage in the bypass channel in GWWTP, in-sewer storage, and a combination of the aforementioned variants, also with real time control (RTC) system introduced. The basic calculations were performed using the EPA’s SWMM software for the period of 5 years (2004-2008). The chosen solution - storage in a separate storage tank - has been verified based on the inflow dataset from the years 2009-2013. The specific volume of the separate storage tank should be at least 22 m3 per hectare of impervious catchment area, but it could be reduced if additional in-sewer storage with RTC were introduced. Both options allow the effective protection of receiving waters against discharge of untreated sewage during wet weather.


1994 ◽  
Vol 30 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Ralf Otterpohl ◽  
Martin Freund ◽  
Juan Pablo Sanz ◽  
Andreas Durchschlag

The total efficiency of combined sewerage systems and wastewater treatment plants (WTP) sbould be considered. By an overall planning procedure the benefits of the whole system can be optimized. For the estimation of the system behaviour with different rain events, computer simulations of the sewerage system including storage tanks and the treatment plant have to be carried out. The two systems are not coupled mathematically allowing separate simulation. Hydrographs of different scenarios computed for the sewerage system can be used for simulations of the WTP. For comparing the effects of different throttle flows on the treatment plant an example bas been simulated. In this example the BOD5 and phosphorus loads could be reduced with a higher throttle flow. The large difference in total discharges from combined sewerage without storage tanks and with well-dimensioned tanks could also be demonstrated.


1996 ◽  
Vol 33 (6) ◽  
pp. 57-66 ◽  
Author(s):  
O. Sinkjær ◽  
P. Bøgebjerg ◽  
H. Gruüttner ◽  
P. Harremoës ◽  
K. F. Jensen ◽  
...  

In connection with the upgrading of the two largest wastewater treatment plants in the Copenhagen area to nutrient removal special attention has been paid to the nitrification process regarding inhibition effects. Inhibitory substances in the wastewater could be identified by simple batch tests, and the long-term effects on the nitrification process were tested in pilot plants or at full-scale. A distinction could be made between effects produced by wastewater from external sources in the catchment area and internally circulated flows in the wastewater treatment plant. Results from programmes monitoring the influent to the Lynetten WWTP and the Damhusåen WWTP and the catchment areas have revealed that discharges from industries are to be considered the most important external sources of inhibition. The load from the external sources has decreased during the investigation period, and since 1993 the nitrification capacity monitored at the pilot plants has been in agreement with the design basis. The recycling of the scrubber water from the cleaning of sludge incineration flue gas was found to be an important internal source of inhibition at the Lynetten WWTP. Investigations show that it is possible to reduce the effect by modifying the existing incineration process and, if necessary, combining it with separate treatment.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1391-1400 ◽  
Author(s):  
R. Otterpohl ◽  
M. Freund

Dynamic simulation of wastewater treatment plants becomes more realistic, if models of primary and secondary clarification are implemented. A simple model of the primary clarifier can describe dynamics of buffered influent or sludge water concentrations. Different changes in ratios of particulate fractions of COD depending on influent flows are modelled as well. Processes in activated sludge plants are affected by the replacement of sludge to the clarifier and by the loss of solids through the effluent. These effects are very strong at combined water flows. The two models best applicable as of yet did not meet measured values for effluent solids. One of them describes thickening and storage of sludge quite well. The developed two component model presented here is able to represent the behaviour of secondary clarifiers at dry and wet weather flows.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Luchien Luning ◽  
Paul Roeleveld ◽  
Victor W.M. Claessen

In recent years new technologies have been developed to improve the biological degradation of sewage sludge by anaerobic digestion. The paper describes the results of a demonstration of ultrasonic disintegration on the Dutch Wastewater Treatment Plant (WWTP) Land van Cuijk. The effect on the degradation of organic matter is presented, together with the effect on the dewatering characteristics. Recommendations are presented for establishing research conditions in which the effect of sludge disintegration can be determined in a more direct way that is less sensitive to changing conditions in the operation of the WWTP. These recommendations have been implemented in the ongoing research in the Netherlands supported by the National Institute for wastewater research (STOWA).


1996 ◽  
Vol 31 (3) ◽  
pp. 453-472 ◽  
Author(s):  
M. Stirrup

Abstract The Regional Municipality of Hamilton-Wentworth operates a large combined sewer system which diverts excess combined sewage to local receiving waters at over 20 locations. On average, there are approximately 23 combined sewer overflows per year, per outfall. The region’s Pollution Control Plan, adopted by Regional Council in 1992, concluded that the only reasonable means of dealing with large volumes of combined sewer overflow in Hamilton was to intercept it at the outlets, detain it and convey it to the wastewater treatment plant after the storm events. The recommended control strategy relies heavily on off-line storage, with an associated expansion of the Woodward Avenue wastewater treatment plant to achieve target reductions of combined sewer overflows to 1–4 per year on average. The region has begun to implement this Pollution Control Plan in earnest. Three off-line detention storage tanks are already in operation, construction of a fourth facility is well underway, and conceptual design of a number of other proposed facilities has commenced. To make the best possible use of these facilities and existing in-line storage, the region is implementing a microcomputer-based real-time control system. A number of proposed Woodward Avenue wastewater treatment plant process upgrades and expansions have also been undertaken. This paper reviews the region's progress in implementing these control measures.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 69-76 ◽  
Author(s):  
A. Durchschlag

As a result of urbanization, the pollutant discharges from sources such as treatment plant effluents and polluted stormwaters are responsible for an unacceptable water quality in the receiving waters.In particular, combined sewer system overflows may produce great damage due to a shock effect. To reduce these combined sewer overflow discharges, the most frequently used method is to build stormwater storage tanks. During storm water runoff, the hydraulic load of waste water treatment plants increases with additional retention storage. This might decrease the treatment efficiency and thereby decrease the benefit of stormwater storage tanks. The dynamic dependence between transport, storage and treatment is usually not taken into account. This dependence must be accounted for when planning treatment plants and calculating storage capacities in order to minimize the total pollution load to the receiving waters. A numerical model will be described that enables the BOD discharges to be continuously calculated. The pollutant transport process within the networks and the purification process within the treatment plants are simulated. The results of the simulation illustrate; a statistical balance of the efficiency of stormwater tanks with the treatment plant capacity and to optimize the volume of storm water tanks and the operation of combined sewer systems and treatment plants.


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


Sign in / Sign up

Export Citation Format

Share Document