Dynamic mathematical modelling of sequencing batch reactors with aerated and mixed filling period

1997 ◽  
Vol 35 (1) ◽  
pp. 105-112 ◽  
Author(s):  
L. Novák ◽  
M. C. Goronszy ◽  
J. Wanner

Sequencing batch reactors (SBRs) can be successfully operated for both carbon and nutrient removal, including nitrogen and phosphorus. The major elements of design that accomplish population dynamics control to prevent filamentous sludge bulking, cycle time, oxygen supply, biological nitrification, denitrification, phosphorus removal and solids-liquid separation need to be set in such a way that sufficiently optimal conditions are provided to permit the reactions and processes to take place. SBR processing using cyclic activated sludge technology employs biological selectors in the inlet part of the SBR system and a minor sludge recycle stream to ensure influent wastewater is mixed with activated sludge flocs to create favourable conditions for kinetic and metabolic selection of microorganisms producing floccules. Reaction volume, in addition to the designated bottom water level volume, is variable through time fed-batch reactor mode of operation. A mathematical model that describes volume changes and simultaneously the biodegradation kinetics has been developed. The model describes theoretical behaviour of selected parameters of volume, suspended solids concentration, OUR, ammonia and nitrate nitrogen in the selector compartment and the main aerated basin in ideally mixed and filled reactors of the cyclic system during the phase of mixed-fill (selector) and aerated and non-aerated fill (main aeration reactor basin).

2014 ◽  
Vol 69 (10) ◽  
pp. 1984-1995 ◽  
Author(s):  
Lana Mallouhi ◽  
Ute Austermann-Haun

Sequencing batch reactors (SBRs) are known for high process stability and usually have a good sludge volume index (SVI). Nevertheless, in many SBRs in Germany for municipal wastewater treatment, scum and foam problems can occur, and SVI can be larger than 200 mL/g. The microscopic investigations of the activated sludge from plants with nitrogen and phosphorus removal have shown that Microthrix parvicella is dominant in the activated sludge in most of them. Studies showed that the optimum growth of M. parvicella is performed at a high sludge age (>20 d) and low sludge load in the range of 0.05–0.2 kg of biochemical oxygen demand per kg of total suspended solids per day (kg BOD5/(TSS·d)). The investigations in 13 SBRs with simultaneous aerobic sludge stabilization (most of them are operated with a system called differential internal cycle strategy sequential batch reactor (DIC-SBR)) show that M. parvicella is able to grow in sludge loads less than 0.05 kg BOD5/(kg TSS·d) as well. To optimize the operation of those SBRs, long cycle times (8–12 h) and dosing of iron salts to eliminate long-chain fatty acids are both recommended. This leads to better SVI and keeps M. parvicella at a low frequency.


1998 ◽  
Vol 38 (1) ◽  
pp. 255-264 ◽  
Author(s):  
Germán Cuevas-Rodríguez ◽  
Óscar González-Barceló ◽  
Simón González-Martínez

This research project was conducted to analyze the performance of a SBR reactor when being fed with anaerobically fermented wastewater. Important was to determine the capacity of the system to remove nitrogen and phosphorus. Two SBR reactors, each one with a volume of 980 liters, were used: one used as fermenter and the other as activated sludge SBR. Using 8-hour cycles, the reactors were operated and studied during 269 days. The fermenter produced an effluent with an average value of 223±24 mg/l of volatile fatty acids. The activated sludge SBR was tested under 3 organic loading rates of 0.13, 0.25, and 0.35 kgCODtotal/kgTSS·d. For the three tested organic loading rates, PO4-P concentrations under 1.1 mg/l and COD between 37 and 38 mg/l were consistently achieved. Exceptionally high NH4-N influent values were measured during the time of the experimentation with the organic load of 0.25 kgCODtotal/kgTSS·d, not reaching in this case full nitrification. Denitrification was observed during the fill phase in every cycle. SVI values between 40 and 70 were determined during the experimental runs.


1999 ◽  
Vol 39 (6) ◽  
pp. 61-68 ◽  
Author(s):  
Klangduen Pochana ◽  
Jürg Keller

Experiments have been performed to gain an understanding of the conditions and processes governing the occurrence of SND in activated sludge systems. Sequencing batch reactors (SBRs) have been operated under controlled conditions using the wastewater from the first anaerobic pond in an abattoir wastewater treatment plant. Under specific circumstances, up to 95% of total nitrogen removal through SND has been found in the system. Carbon source and oxygen concentrations were found to be important process parameters. The addition of acetate as an external carbon source resulted in a significant increase of SND activity in the system. Stepwise change of DO concentration has also been observed in this study. Experiments to determine the effect of the floc size on SND have been performed in order to test the hypothesis that SND is a physical phenomenon, governed by the diffusion of oxygen into the activated sludge flocs. Initial results support this hypothesis but further experimental confirmation is still required.


Author(s):  
Hongwei Sun ◽  
Chenjian Cai ◽  
Jixue Chen ◽  
Chunyu Liu ◽  
Guangjie Wang ◽  
...  

Abstract In order to investigate the effect of temperatures and operating modes on extracellular polymeric substances (EPS) contents, three sequencing batch reactors (SBRs) were operated at temperatures of 15, 25, and 35 °C (R15 °C, R25 °C, and R35 °C, respectively), with two SBRs operated under alternating anoxic/oxic conditions (RA/O and RO/A, respectively). Results showed that higher contents of tightly bound EPS (TB-EPS) and total EPS appeared in R15 °C, while loosely bound EPS (LB-EPS) dominated in R35 °C. In all three kinds of EPS (LB-EPS, TB-EPS and total EPS) assessed, protein was the main component in R15 °C and R25 °C, while polysaccharides dominated in R35 °C. Moreover, compared with RO/A, RA/O was favorable for the production of the three kinds of EPS. Furthermore, three kinds of EPS and their components were augmented during the nitrification process, while they declined during the denitrification process under all conditions except for R35 °C.


2008 ◽  
Vol 58 (2) ◽  
pp. 351-358 ◽  
Author(s):  
G. Wu ◽  
Y. Guan ◽  
X. Zhan

The effects of salinity on the activity in nutrient removal, settling and microbial community of activated sludge in sequencing batch reactors (SBRs) treating synthetic saline wastewater were investigated. Two SBRs, one treating synthetic saline wastewater (the N-Reactor, with NaCl addition) and the other treating fresh synthetic wastewater (the C-Reactor, without NaCl addition), were operated for 68 days. Three salinities (in terms of concentrations of NaCl)—10, 20 and 40 g NaCl/l—were examined. The microbial activity described with the specific glucose utilization rate, specific nitritation and nitratation rates, and specific phosphorus release and uptake rates, was inhibited in the N-Reactor, in comparison with that in the C-Reactor, except that the specific nitritation and nitratation rates were improved at the salinity of 10 g NaCl/l. The sludge yield coefficient decreased at salinities of 10 and 20 g NaCl/l but it rose at the salinity of 40 g NaCl/l. The settling of activated sludge flocs, in terms of the sludge volume index (SVI), was improved by adding NaCl. Particularly in the first 5 minutes during the SVI measurement, activated sludge flocs in the N-Reactor settled much faster than those in the C-Reactor. However, the effluent from the N-Reactor contained higher suspended solids than the effluent from the C-Reactor. The microbial diversity decreased with increasing the salinity, and the microbial community structure was greatly influenced by the salinity. Bacteriodetes and Actinobacteria were the dominant phylums detected with molecular fingerprinting techniques.


1992 ◽  
Vol 25 (6) ◽  
pp. 239-249 ◽  
Author(s):  
J. Wanner

Sequencing batch reactors (SBR) are often used for research on nutrient removal systems. A model anaerobic-oxic SBR was compared with a compartmentalized continuous-flow system. The levels of COD, phosphorus, and nitrogen removal in both systems were comparable but the biocenoses differed significantly. The SVI values of activated sludge from the continuous reactor ranged between 100 and 200 ml/g although no significant occurrence of filamentous microorganisms was observed. The sequencing batch reactor produced activated sludge with the SVIs below 100 ml/g and with high settling velocities. Filamentous microorganisms were frequently observed in the biocenosis of the SBR. The differences in settling properties and filamentous growth in both reactors are discussed and explained.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 646 ◽  
Author(s):  
Massimo Blonda ◽  
Angelantonio Calabrese ◽  
Raffaele Palumbo ◽  
Elvira Giorgio

Sulphide was adopted as odorous compound in a simulation of AS Diffusion, an interesting process to treat odors at wastewater treatment plants by diffusing odorous air into aerobic basins. Its behaviour were experimentally evaluated along with its effects on the biomass and the biological processes supposed by some author in an AS diffusion test. Two bench scale sequencing batch reactors (SBRs) were fed in parallel on real primary sewage and monitored after adding increasing concentrations of sulphide to one of them. In this reactor, an average sulphide removal of 94% was measured. Microbial biochemical activity and composition did not show relevant variations after the addition of sulphide, and the good features of activated sludge flocs were maintained also in terms of sludge settleability.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 984
Author(s):  
Pedro Cisterna-Osorio ◽  
Claudia Calabran-Caceres ◽  
Giannina Tiznado-Bustamante ◽  
Nataly Bastias-Toro

This research studies the incidence of the type of substrate, soluble or particulate, in the emergence, development, and inhibition of bulking in activated sludge systems. It was evaluated using the sludge volume index (SVI), mixing liquor-suspended solids (MLSS), microscopic analysis of biomass, and effluent suspended solids (ESS). In the first experiment, four sequencing batch reactors (SBRs) were fed with soluble substrate at a fixed mass, while the mass of the particulate substrate varied, as those (saccharose mass/flour mass) ratios were 3:1, 3:2, 3:3 and 3:4., with a deficit ranging from 20 to 30% compared to the ratio recommended. The four SBRs have similar MLSS, IVL, and ESS. From day 30, with a deficit from 80 to 90%, the influents have ratios 1/1 and 1/2 until 48 days. The SBRs present IVL between 600 and 730 mL/g and ESS from 370 to 440 mg/L; unlike influents with ratios 1/3 and 1/4, they present IVL between 170 and 185 mL/g, and ESS from 260 to 270 mg/L. The favorable effect of particulate matter is categorical. In the second set of experiments, two SBRs were studied: SBR 1 fed with saccharose, and SBR 2 with flour; there is a lack of nutrients causing bulking in SBRs. Once the nutrient deficiency condition is changed in day 11 to excess, after 22 days, the SVI was 190 mL/g, ESS was 360 mg/L, and MLSS was 2000 mg/L for influents with saccharose; the influent with flour, with an SVI of 80 mL/g, ESS of 100 mg/L, and MLSS of 4000 mg/L, shows faster and more consistent recovery with the particulate substrate. Therefore, the proposal is to add particulate substrate-like flour to active sludge plants facing bulking. It is a clean, innocuous and sustainable alternative to processes that use chemical reagents.


1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9325
Author(s):  
Katarzyna Jaromin-Gleń ◽  
Roman Babko ◽  
Tatiana Kuzmina ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
...  

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.


Sign in / Sign up

Export Citation Format

Share Document