The use of algal-bacterial biofilms to enhance nitrification rates in lagoons: experience under laboratory and pilot-scale conditions

2000 ◽  
Vol 42 (10-11) ◽  
pp. 187-194 ◽  
Author(s):  
B. M. McLean ◽  
K. Baskaran ◽  
M. A. Connor

Investigations were undertaken at the Western Treatment Plant (WTP), near Melbourne, Australia, to find ways of increasing overall ammonia and nitrogen removal rates in the WTP lagoon systems. Immobilisation of nitrifying bacteria in biofilms was one approach explored. Preliminary tests showed that algal/bacterial biofilms capable of achieving ammonia removal rates of 3 to 4 μg N/cm2·h would form on support surfaces immersed in the WTP lagoons. A laboratory-scale investigation was carried out to characterise the influence of parameters such as pH, temperature, COD level, dissolved oxygen concentration and incubation depth on biofilm performance. This study was followed by a pilot-scale investigation in a series of experimental ponds at the WTP. This compared the performance of three ponds, two containing 9360 m2 and 18240 m2 respectively of a geotextile biofilm support material and one containing no biofilm support material (the control pond). Ammonia removal rates comparable to those obtained in the preliminary tests were obtained when the biofilm support material was within the top 500 mm of the lagoon, i.e. in the photic zone. COD and suspended solids levels in the effluents from the biofilm containing ponds were substantially lower than those in the control pond effluent.

2010 ◽  
Vol 45 (4) ◽  
pp. 427-436 ◽  
Author(s):  
Robert Delatolla ◽  
Nathalie Tufenkji ◽  
Yves Comeau ◽  
Alain Gadbois ◽  
Daniel Lamarre ◽  
...  

Abstract A mobile testing center was installed at a lagoon wastewater treatment plant (WWTP) at Terrebonne, Canada to investigate the rate of ammonia removal of attached growth treatment systems at 4°C and at low influent carbon concentrations. The testing center housed two laboratory-scale reactors, a pilot-scale BioStyr system (Veolia Water) and a pilot-scale moving bed bioreactor (MBBR) system (Veolia Water). Although the rates of laboratory-scale and the pilot-scale systems demonstrated that the exposure time to low temperature has a significant effect on the kinetics of the system, the ammonia removal rates of all the systems were shown to be significant at 4°C. A strong correlation was demonstrated between the rates of ammonia removal produced by the laboratory-scale reactors, the pilot BioStyr system and pilot MBBR system; thus verifying the scaleup capability of the laboratory-scale reactors and demonstrating that nitrifiers can achieve ammonia removal under cold temperature conditions for elapsed periods of time independent of the reactor design. Finally, the ammonia removal rates of the laboratory-scale systems, the BioStyr pilot system, and the MBBR pilot system were all accurately predicted by a recently proposed Theta model.


2000 ◽  
Vol 41 (1) ◽  
pp. 163-166 ◽  
Author(s):  
W. Gebert ◽  
P.A. Wilderer

The investigated effects of heating the filling material in trickling filters were carried out at the Ingolstadt wastewater treatment plant, Germany. Two pilot scale trickling filters were set up. Heat exchanger pipings were embedded in the filter media of one of these trickling filters, and the temperature in the trickling filter was raised. The other trickling filter was operated under normal temperature conditions, and was used as a control. The results clearly demonstrate that the performance of trickling filters cannot be constantly improved by heating the biofilm support media. A sustained increase of the metabolic rates did not occur. The decrease of the solubility of oxgen in water and mass transfer limitations caused by an increase of the biofilm thickness are the main reasons for that. Thus, the heating of trickling filters (e.g. by waste heat utilization) in order to increase the capacity of trickling filters under cold weather conditions cannot be recommended.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 113-117 ◽  
Author(s):  
A. J. Ware ◽  
M. B. Pescod ◽  
B. Storch

A variety of biofilm support media for rotating biological contactors, both aerobic and anaerobic. are reviewed in the light of experience gained from laboratory. pilot-scale and full-scale operations. Currently there is no clear economically superior replacement for conventional HDPE moulded discs for aerobic treatment plants. As little anaerobic full-scale operational work has been carried out it has been speculated that random-packed media and twin-walled polycarbonate sheets could provide a substitute support material in anaerobic treatment units.


2007 ◽  
Vol 55 (11) ◽  
pp. 65-71 ◽  
Author(s):  
R.K.X. Bastos ◽  
E.N. Rios ◽  
F.L. Dornelas ◽  
F.A.L. Assunção ◽  
L.E. Nascimento

Ammonia and phosphorus removal were evaluated over four years monitoring of an experimental wastewater treatment plant in Brazil: initially a UASB reactor (real scale) + three shallow polishing ponds (pilot scale), afterwards a UASB + submerged aerated biofilter (BF) (real scale) + the same pond series. Shallow ponds (h < 0.90m) provided considerable ammonia removal, but phosphorus removal was somewhat poorer. An equation was derived for the estimation of ammonia pond effluent, based on the same assumptions of the well known Pano and Middlebrooks model. According to the experimental data, an effluent suitable for aquaculture should be achieved with retention time of 25 days.


2000 ◽  
Vol 42 (10-11) ◽  
pp. 91-98 ◽  
Author(s):  
T.J. Hurse ◽  
M.A. Connor

Regular monitoring of wastewater characteristics is undertaken on most wastewater treatment plants. The data acquired during this process are usually filed and forgotten. However, systematic analysis of these data can provide useful insights into plant behaviour. Conventional graphical techniques are inadequate to give a good overall picture of how wastewater characteristics vary, with time and along the lagoon system. An approach based on the use of contour plots was devised that largely overcomes this problem. Superimposition of contour plots for different parameters can be used to gain a qualitative understanding of the nature and strength of relationships between the parameters. This is illustrated in an analysis of monitoring data for lagoon 115 East at the Western Treatment Plant, near Melbourne, Australia. In this illustrative analysis, relationships between ammonia removal rates and parameters such as chlorophyll a level and temperature are explored using a contour plot superimposition approach. It is concluded that this approach can help improve our understanding, not only of lagoon systems, but of other wastewater treatment systems as well.


2014 ◽  
Vol 41 (2) ◽  
pp. 118-124 ◽  
Author(s):  
Alison Chan ◽  
Hamidreza Salsali ◽  
Ed McBean

Microalgae as a feasible option to remove nutrients (phosphorous and nitrogen) from domestic wastewater treatment plant discharge is demonstrated. Laboratory-scale experiments are described, characterizing nutrient removal of total phosphorous and ammonia by three cultured microalgae strains: Chlorella vulgaris, Spirulina maxima, and mixed cultures of naturally growing algae found in wastewater from the Collingwood Wastewater Treatment Plant in Ontario, Canada containing Synechocystis sp. (dominant), Chlorella sp. (common), and a few cells of Scenedesmus sp. Removal of phosphates strongly positively relates to solution pH. Volatilization of ammonia due to increase in pH is not a dominant contributor to overall removal efficiency. Total phosphorous removal rates reached 95.8% and 90.4% for untreated and autoclaved secondary effluent, respectively. Ammonia removal rates reached 94.6% and 86.2% for untreated and autoclaved secondary effluent, respectively. These results demonstrate that use of microalgae represents a sustainable approach to improve removal efficiencies of nutrients in wastewater treatment.


2017 ◽  
Vol 76 (11) ◽  
pp. 3171-3180 ◽  
Author(s):  
Yoshiaki Hasebe ◽  
Hiroaki Meguro ◽  
Yuuki Kanai ◽  
Masahiro Eguchi ◽  
Toshifumi Osaka ◽  
...  

Abstract Nitrifying granules have a high sedimentation property and an ability to maintain a large amount of nitrifying bacteria in a reaction tank. Our group has examined the formation process of nitrifying granules and achieved high-rate nitrification for an inorganic synthetic wastewater using these granules. In this research, a pilot-scale test plant with an 850-liter reaction tank was assembled in a semiconductor manufacturing factory in order to conduct a continuous water conduction test using real electronics industry wastewater. The aim was to observe the formation of nitrifying granules and determine the maximum ammonia removal rate. The average granule diameter formed during the experiment was 780 μm and the maximum ammonia removal rate was observed to be 1.5 kgN·m−3·day−1 at 20 °C, which is 2.5–5 times faster than traditional activated sludge methods. A fluorescence in situ hybridization analysis showed that β-proteobacterial ammonia oxidizing bacteria and the Nitrospira-like nitrite-oxidizing bacteria dominate the bacteria population in the granules, and their strong aggregation capacity might confer some benefits to the formation of these nitrifying granules.


1995 ◽  
Vol 32 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Seni Karnchanawong ◽  
Jaras Sanjitt

Two pilot-scale studies were comparatively conducted under tropical conditions during December 1992 to September 1993. One study involved facultative ponds(FP) and the others water spinach ponds(SP). Four rectangular concrete ponds, 0.8 m × 2.4 m × 1.1 m (width × length × depth), were employed to treat the Chiang Mai University campus wastewater. Water spinach (Ipomoea aquatica) was planted in two of the ponds. The influent characteristics noted showed a low organic content, i.e. BOD 25.4-29.9 mg/l, with BOD:N ratio around 1:1. The investigations were conducted using the following hydraulic retention times (HRT): 1.6, 2, 2.7, 4, 8 and 16 d. The results showed that the BOD, COD and SS mass removal rates increased as the mass loading rates increased and the SP was significantly more effective in reducing the organic content than the FP. No relationship was found between TN mass removal and the loading rates. However, the TP mass removal rates in the SP and the FP were rather low and were considered to be insignificant. It was observed that SS accumulated in the water spinach root systems which tended to act as a strainer. This process led to plant growth inhibition and finally die-off. The average water spinach growth rates varied from 37 to 107 g wet wt./(m2.d) and no relationship was established between the growth rates and the HRT.


1996 ◽  
Vol 33 (7) ◽  
pp. 165-171 ◽  
Author(s):  
J. Soares ◽  
S. A. Silva ◽  
R. de Oliveira ◽  
A. L. C. Araujo ◽  
D. D. Mara ◽  
...  

Ammonia removal was monitored in a waste stabilisation pond complex comprising ponds of different geometries and depths under two different operational regimes. It was found that a high degree of ammonia removal commenced in the secondary maturation ponds, with the highest removals occurring in the shallowest ponds as a consequence of improved aerobic conditions. The tertiary maturation ponds produced effluents with mean ammonia concentrations of < 5 mg N/l, the maximum permitted recommended by Brazilian environmental legislation for the discharge of effluents of wastewater treatment plants into surface waters. Ammonia removal in the secondary facultative and maturation ponds could be modelled using equations based on the volatilization mechanism proposed by Middlebrooks et al. (1982).


Sign in / Sign up

Export Citation Format

Share Document