Predicting soil-water partition coefficients for Hg(II) from soil properties

2001 ◽  
Vol 43 (2) ◽  
pp. 187-196 ◽  
Author(s):  
S.-Z. Lee ◽  
L. Chang ◽  
C.-M. Chen ◽  
Y. I. Tsai ◽  
M.-C. Liu

The metal adsorption characteristics for fifteen Taiwan soils by Hg(II), were evaluated using pH as the major variable. The soil samples were thoroughly characterized for their physical chemical properties and composition, particularly organic matter and metal oxides. The adsorption of Hg(II) increased with increasing pH between pH 2.5 and 5.5, whereas the adsorption significantly decreased above around pH 5.5. Below pH 5.5, greater adsorption was found for soils with a higher organic matter content at constant pH and metal concentration. To better understand the mechanism of adsorption, the experimental results for Hg (II) were tested in a partition coefficient model to relate the adsorption of the Hg(II) by the different soils with soil components: organic matter, iron oxide, aluminium oxide and manganese oxide. This model was not successful when applied to measurements at the differing natural soil pHs because of the importance of pH. At pH greater than 5.5 the model fails because of the complexation of Hg by the dissolved organic matter. However, partition coefficients obtained from experimental data were highly correlated with those calculated for a partition coefficient between mercury and organic matter alone at lower pH. Normalization of the partition coefficients, Kd, for the organic matter content of the soils, Kom, greatly improved the correlation between the partition coefficient and pH under pH 5.5 (R2 increased from 0.484 to 0.716). This suggests that the surficial adsorption sites are principally due to organic matter for pH less than 5.5. For the 24-hour equilibration period employed, diffusion of Hg through this superficial organic matter coating to underlying sorptive materials, including metal oxides, is not important in the partitioning of Hg. At pH above 5, a decrease of mercury adsorption with increasing solution pH was also found. This result may be explained in part by the complexation of mercury by soil dissolved organic matter whose concentration increased with increasing pH.

Weed Science ◽  
1976 ◽  
Vol 24 (6) ◽  
pp. 549-552 ◽  
Author(s):  
J. D. Gaynor ◽  
V. V. Volk

The effects of soil organic matter, clay, extractable Al, cation exchange capacity, and pH on the adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) from aqueous and surfactant solutions were investigated. Linear adsorption isotherms for the soils were obtained with the Freundlich equation. Of the five soil properties investigated, Freundlich K values correlated with extractable Al and clay content. Picloram adsorption from aqueous solutions and from the non-ionic and anionic surfactant solutions was greater on the soils at pH 5 than at pH 7. The anionic surfactant competed with picloram for adsorption sites on the soils at pH 5. Picloram adsorption from solutions containing 0.1 and 1% cationic surfactant was greater than that from aqeuous and anionic and nonionic surfactant solutions. Picloram adsorption from the 10% cationic surfactant solution was similar on soils with pH 5 and 7 and increased with decreased organic matter content.


1998 ◽  
Vol 16 (8) ◽  
pp. 583-594 ◽  
Author(s):  
Dhirendra Singh

The effect of exchangeable cations (H+ and Na+). autoclaving, organic matter, anionic surfactants and temperature on the adsorption of phosphamidon on two different types of Indian soil was studied. The adsorption isotherms for all the effects/treatments were in close agreement with the Freundlich equation and yielded S-shaped isotherms. The amount of phosphamidon adsorbed in all cases was higher in medium black (silt loam) soil than alluvial soil (sandy loam) and was related to the organic matter content, clay content, CaCO3 content, surface area and cation-exchange capacity of the soils. The adsorption on both types of soil follows the order H+-soil > Na+-soil > natural soil at 10°C > natural soil at 20°C > autoclaved soil > organic matter-removed soil > anionic surfactant > natural soil at 40°C, which was in accordance with the Freundlich constant, KF, and distribution coefficient, Kd, values. The adsorption capacity of phosphamidon for organic matter and clay content for both the soils was evaluated by calculating the Kom and Kc values when it was found that phosphamidon adsorption was better correlated with the clay content than with the orgnic matter content on the basis of adsorption isotherms. Various thermodynamic parameters such as the thermodynamic equilibrium constant (K0), the standard free energy (ΔG0), the standard enthalpy (ΔH0) and the standard entropy (ΔS0) changes have been calculated as a means of predicting the nature of the isotherms.


2020 ◽  
Author(s):  
Liang Wei

<p>The biogeochemical interfaces are hotspots for organic matter (OM) transformation. However, direct and continuouxiacis tracing of OM transformations and N and P degradation processes are lacking due to the heterogeneous and opaque nature of soil microenvironment. To investigate these processes, a new soil microarray technology (SoilChips) was developed and used. Homogeneous 2-mm-diameter SoilChips were constructed by depositing a dispersed paddy soils with high and low soil organic carbon (SOC) content. A horizon suspension on a patterned glass. Dissolved organic matter from the original soil was added on the SoilChips to mimic biogeochemical processes on interfaces. The chemical composition of biogeochemical interfaces were evaluated via X-ray photoelectron spectroscopy (XPS) and the two-dimensional distribution of enzyme activities in SoilChips were evaluated by zymography. Over 30 days, soil with high SOC content increases microbial nutrition (N and P) requirements than soil with low SOC evidenced by higher hotspots of β-1,4-N-acetaminophen glucosidase, and acid phosphomonoesterases and higher 16S rRNA gene copies. The degree of humification in dissolved organic matter (DOM) was higher and the bioavailability of DOM was poorer in soil with high SOC than soil with low SOC. The poorest bioavailability of DOM was detected at the end of incubation in soil with high SOC. Molecular modeling of OM composition showed that low SOC mainly facilitated the microbial production of glucans but high SOC mainly facilitated the microbial production of proteins. We demonstrated that SOC content or DOM availability for microorganisms modifies the specific OM molecular processing and N and P degradation processes, thereby providing a direct insight into biogeochemical transformation of OM at micro-scale.</p>


1989 ◽  
Vol 3 (1) ◽  
pp. 190-197 ◽  
Author(s):  
Patrick J. Shea

Organic matter is the soil constituent most often associated with herbicide adsorption. Structural diversity makes humified organic material an ideal substrate for the adsorption of many pesticides, but variability in composition and distribution in situ complicates interpretation of its quantitative effect on adsorption. Variability in the adsorption distribution coefficient (KD) of a herbicide among soils often is due to differences in organic matter content and can be reduced by adjusting KDfor soil organic carbon content and computing the organic carbon partition coefficient (Koc). Koccan be estimated from the octanol-water partition coefficient (Kow) of organic compounds, but the correlation weakens as compound polarity increases. Kocalso can be correlated with aqueous solubility if a correction is made for the melting point of compounds that are solids at 25 C. Relative adsorption can be estimated from parachor and molecular connectivity indices; but corrections are needed for polar compounds, and correlations with KDor Kochave been variable. Such predictive methods may be useful for broad classification purposes, but accurate extrapolation generally requires site-specific adsorption measurements. Empirical models which accommodate the multiple regression of organic matter content and other soil properties such as clay content, pH, and cation exchange capacity on herbicide adsorption can increase accuracy, but interpretation may be restricted to a small number of sites.


Sign in / Sign up

Export Citation Format

Share Document