Phenol degradation in horizontal-flow anaerobic immobilized biomass (HAIB) reactor under mesophilic conditions

2001 ◽  
Vol 44 (4) ◽  
pp. 167-174 ◽  
Author(s):  
R. M.L. Bolaños ◽  
M. B.A. Varesche ◽  
M. Zaiat ◽  
E. Foresti

A bench-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor was assayed aiming to verify its potential use for phenol degradation. The HAIB reactor consisted of a bore-silicate tube (100 cm long; 5.04 cm diameter) filled with polyurethane foam matrices containing immobilized anaerobic sludge. Before being subjected to phenol, the reactor was fed with synthetic substrate at the influent chemical oxygen demand (COD) of 1,028 mg.l−1 achieving 98% of COD removal efficiency. Thereafter, phenol as the sole carbon source was added under step-increasing concentrations from 50 to 1,200 mg.l−1. Phenol degradation was evaluated by gas chromatographic analysis of influent and effluent samples. Process monitoring included determinations of pH, volatile acids, alkalinity and COD. The HAIB reactor was operated at a constant hydraulic detention time (HDT) of 12 hours. After 33 days with 50 mg/l of phenol in the influent, the reactor achieved 98% of COD removal efficiency. Successful phenol degradation (efficiency removal of 99%) occurred for influent concentrations of 100, 300, 600, 900 and 1,200 mg.l−1 after 148, 58, 47, 29 and 7 days, respectively. The predominance of Methanosaeta-like, rods and methanogenic cocci could be observed in all the operating conditions, besides the presence of phenol oxidizing microorganisms as irregular rods. The results indicate that phenol degradation at very high rates can be accomplished in HAIB reactors containing acclimatized biomass.

2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2008 ◽  
Vol 57 (7) ◽  
pp. 1047-1052 ◽  
Author(s):  
U. Durán ◽  
O. Monroy ◽  
J. Gómez ◽  
F. Ramírez

The biological elimination of polymeric resins compounds (PRC) such as acrylic acid and their esters, vinyl acetate and styrene under methanogenic and oxygen-limited methanogenesis conditions was evaluated. Two UASB reactors (A and B) were used and the removal of the organic matter was studied in four stages. Reactor A was used as methanogenic control during the study. Initially both reactors were operated under methanogenic conditions. From the second stage reactor B was fed with 0.6 and 1 mg/L·d of oxygen (O2). Reactor A had diminution in chemical oxygen demand (COD) removal efficiency from 75±4% to 37±5%, by the increase of PRC loading rate from 750 to 1125 mg COD/L·d. In this reactor there was no styrene elimination. In reactor B the COD removal efficiency was between 73±5% and 80±2%, even with the addition of O2 and increase of the PRC loading rate, owing to oxygen being used in the partial oxidation of these compounds. In this reactor the yields were modified from 0.56 to 0.40 for CH4 and from 0.31 to 0.60 for CO2. The O2 in low concentrations increased 40.7% the consumption rates of acrylic acid, methyl acrylate and vinyl acetate, allowing styrene consumption with a rate of 0.103 g/L·d. Batch cultures demonstrated that under methanogenic and oxygen-limited methanogenesis conditions, the glucose was not used as an electron acceptor in the elimination of PRC.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Tao Wang ◽  
Zhenxing Huang ◽  
Hongyan Ren ◽  
Hengfeng Miao ◽  
Minxing Zhao ◽  
...  

This study aimed to investigate the effectiveness of the full-scale internal circulation (IC) reactor in biodegrading of municipal solid waste (MSW) fresh leachate under mesophilic conditions, where the anaerobic process stability, biogas yield, and sludge granulation were intensively investigated. The effects of operational parameters on the influent organic loading rate (OLR), chemical oxygen demand (COD) removal efficiency, alkalinity (ALK), pH, volatile fatty acids (VFAs) accumulation, and effluent recirculation were also studied. The results showed that the reactor operated stably and effectively. The COD removal efficiency and biogas yield could be maintained at (92.8 ± 2.0)% and (0.47 ± 0.05) m3/kg CODremoval, respectively, with the influent OLR (24.5 ± 0.9) kg COD/(m3 d) and hydraulic retention time (HRT) 2.7d during the stable operation phase. Meanwhile, this study demonstrated that 1.5–3.0 m/h would be the optimal Vup for the reactor, corresponding to the effluent recirculation of 32.5–78.0 m3/h. Moreover, it was found that the content of extracellular polymeric substances (EPS) in the anaerobic sludge increased from 50.3 to 140.7 mg/g volatile suspended solids (VSS), and the sludge had good granular performance during the reactor operation.


2010 ◽  
Vol 37 (3) ◽  
pp. 496-501 ◽  
Author(s):  
K.N. Njau ◽  
M. Renalda

A horizontal subsurface flow constructed wetland (HSSFCW) was employed to remove tannins from the effluent of a tannins extracting company. Two HSSFCW cells with hydraulic retention time (HRT) of 9 d and packed with limestone were used. One cell without macrophytes was used as a control, while the second cell was planted with Phragmites mauritianus . Results indicated that HSSFCW was capable of treating tannin wastewater that has been seeded with primary facultative pond sludge. Tannins and chemical oxygen demand (COD) removal efficiency of 95.9% and 90.6% with outlet concentration of 27 mg/L and 86 mg/L, respectively, were obtained in the planted cell; while the tannins and COD removal efficiency of 91.1% and 89.5% with outlet concentration of 57 mg/L and 96 mg/L, respectively, were obtained in the control cell.


2013 ◽  
Vol 303-306 ◽  
pp. 2616-2619
Author(s):  
Xiao Yan Sun ◽  
Pei Dao Pan ◽  
Jang Jie Wang

This mechanical processing waste emulsion for the study, handled by pulse electrolysis. Arrangements by orthogonal testing, experimental study on plate distance (d), current density (i), the pH value and the pulse width (tP) impact on COD removal efficiency, very poor analysis of test data to determine various factors affecting the COD removal efficiency of primary and secondary sort: pH value > current density > pulse width > plate distance, optimal operating conditions. Orthogonal experimental data derived from regression analysis, determination of cross of quadratic polynomial regression equations, mathematical model. Tests confirmed that pulse electrochemical method for treatment of waste emulsion with low energy consumption, short response time, and other advantages, strong applicability of wastewater, building mathematical models, providing theoretical basis for subsequent design.


2013 ◽  
Vol 726-731 ◽  
pp. 2813-2817
Author(s):  
Guang Li ◽  
Jing Li ◽  
Ke Sun

The interior diversion expanded granular sludge bed was concurrently operated for 140d to study the characteristic of the granular sludge bed. The influent COD concentration varied from 2000mg/L to 22300 mg/L, hydraulic retention time was maintained constant at 24 h and the organic loading rate was changed through a change in substrate concentration. The results showed that the reactor had great COD removal efficiency. When the MLSS was 23.1g/L, the influent COD was 18890mg/L, the COD removal efficiency was 80.4%; The interior diversion EGSB could greatly improve the role of gas-dynamic, when the liquid upflow velocity was 3.55m/h, the gas production was 5.96 L/d shows higher sludge bed expansion rate than 2.77 L/d about 9.5%. During the experimental, the anaerobic sludge has the following properties: the average sludge diameter was increased from 0.41mm to 1.66mm. Observed under the scanning electronic microscopy, we found that the sludge appeared obviously granulation, the bacteria amount and species are more than seed sludge after operation of 50d. It was found that rough surface of anaerobic sludge has clear figure with being covered by mucous lamina, with visible hole or cavity on surface.


2011 ◽  
Vol 71-78 ◽  
pp. 2974-2977 ◽  
Author(s):  
Zong Lian She ◽  
Jian Wu ◽  
Xiao Hui Fu ◽  
En Shi ◽  
Bao Shi Li ◽  
...  

Effect of cationic polymer on granulation and COD removal efficiency in lab scale UASB reactors was examined, treating low-strength wastewater (COD 300-500mg l-1) at room temperature. It was shown that cationic polymer was more effective for enhancing sludge granulation and COD removal efficiency as compared to the control experiment (without additives). After day 166 of operation, the amount of granules size above 0.5mm accounted for 32.1% of total sludge, higher than that of control experiment (19.3%). At 1.03 kg COD m-3 d-1 of OLR and 9.8 h of HRT, the effluent VFA had a maximum value of 168mg l-1 and 240mg l-1 in Reactor A and B respectively. The polymer-amended reactor took 36days to receive 1.44 kg COD m-3 d-1 of OLR at the 7.8 h of HRT, shorter than the control reactor (54days). The two reactors obtained above 80% in COD removal efficiency. It is shown that UASB reactor can also achieve higher COD removal treating low strength wastewater at room temperature.


2013 ◽  
Vol 3 (3) ◽  
pp. 204-216 ◽  
Author(s):  
Jing Wang ◽  
Hongzhu Ma ◽  
Jie Yu ◽  
Shanshan Wang ◽  
Wenyan He ◽  
...  

Cetyltrimethylammonium bromide (CTAB) modified bentonite supported KMnO4 (KMnO4/CTAB-bent) was prepared by solid-phase grinding method, and applied to phenol removal from wastewater. Factors affecting efficiency, such as activated temperature, initial solution pH, KMnO4/CTAB-bent dosage, phenol initial concentration and reaction temperature on degradation were investigated. It was found that pH significantly affected the degradation and chemical oxygen demand (COD) removal efficiency. The results show that over 92% degradation and 60.58% COD removal efficiency can be obtained in 30 min. The surface properties and structure of KMnO4/CTAB-bent were measured by X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy. However, it was demonstrated that the KMnO4/CTAB-bent was deactivated quickly during phenol degradation after the second cycle, indicating that the stability of KMnO4/CTAB-bent needs to be further improved.


2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


2021 ◽  
Vol 18 (4) ◽  
pp. 135-140
Author(s):  
Sanju Sreedharan

Zero energy technologies and sustainable energy production are the two major concerns of present day researches. Microbial fuel cells (MFCs) are bioreactors that extract chemical energy stored in organic compounds, into electric potential, through bio-degradation. The core reason for the high strength of effluent generated from slaughterhouses is animal blood. The current study evaluates the potential of MFC technology to reduce the pollution strength of cattle blood in terms of chemical oxygen demand (COD). The current study was piloted in three stages using lab scale two chambered MFC: The first stage was to determine the best oxidising agent as compared to natural aeration from three accessible options, KMnO4, diffused aeration and tape grass aquatic plant. KMnO4 was found to be the superlative with a 30% reduction in COD in 100 hrs batch reactor and a maximum power of 0.97 mW using 125 mL livestock blood. The second stage of the study optimised the concentration of KMnO4. At 500 mg/L KMnO4 concentration, 50% COD removal efficiency was acquired in a batch reactor of 60 hrs with an average energy output of 1.3 mW. In the final stage on the addition of coconut shell activated carbon with an Anolyte at a rate of 40 mL/125 mL of substrate COD removal efficiency increased to 74.9%.


Sign in / Sign up

Export Citation Format

Share Document