Semiconductor-mediated photocatalysed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension

2001 ◽  
Vol 44 (5) ◽  
pp. 331-337 ◽  
Author(s):  
M. Muneer ◽  
D. Bahnemann

The photocatalysed degradation of two selected pesticide derivatives, namely 3-tert-butyl-5-chloro-6-methyluracil (terbacil) and 2,4,5-tribromoimidazole (TBI) has been investigated in aqueous suspensions of titanium dioxide (TiO2) under a variety of conditions employing a pH-stat technique. The degradation was studied by monitoring the change in substrate concentration of the model compound employing HPLC analysis, and the decrease in total organic carbon (TOC) content, respectively, as a function of irradiation time. The degradation kinetics were studied under different conditions such as reaction pH, substrate and photocatalyst concentration, type of TiO2 photocatalyst and the presence of alternative additives such as H2O2, KBrO3 and (NH4)2S2O8 besides molecular oxygen. The degradation rates and the photonic efficiencies were found to be strongly influenced by the above parameters. Toxicity tests for the irradiated samples of the pesticide derivatives measuring the luminescence of bacteria Vibrio fischeri after 30 minutes of incubation were also performed.

2005 ◽  
Vol 486-487 ◽  
pp. 61-64
Author(s):  
Detlef W. Bahnemann ◽  
M. Muneer ◽  
M. Qamar ◽  
M.A. Rahman ◽  
H.K. Singh

The photocatalysed degradation of various selected pesticide derivatives, namely N,NDimethyl- a-phenyl benzene acetamide (Diphenamid) [1], 1,2-diethyl phthalate (DEP) [2], 5-bromo- 3-sec.butyl-6-methyl uracil (Bromacil) [3], 3-tert-butyl-5-chloro-6-methyluracil (Terbacil), 2,4,5- tribromoimidazole (TBI) [4], Methoxychlor, Chlorothalonil and Disulfoton [5] as well as that of two selected priority organic pollutants, namely benzidine and 1,2-diphenyhydrazine (DPH) [6], has been investigated in aqueous suspensions of titanium dioxide (TiO2) under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic analysis or HPLC technique and the decrease in total organic carbon (TOC) content, respectively, as a function of irradiation time. The degradation kinetics was studied under different conditions such as reaction pH, substrate and photocatalyst concentration, type of photocatalysts and the presence of alternative additives such as H2O2, KBrO3 and (NH4)2S2O8 besides molecular oxygen. The degradation rates and the photonic efficiencies were found to be strongly influenced by the above parameters. A toxicity test was performed for irradiated samples of few selected systems measuring the luminescence of bacteria Vibrio fischeri after 30 minutes of incubation.


2007 ◽  
Vol 20 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Razika Zouaghi ◽  
Abdennour Zertal ◽  
Bernard David ◽  
Sylvie Guittonneau

Abstract The photocatalytic degradation of two phenylurea herbicides, monolinuron (MLN) and linuron (LN), was investigated in an aqueous suspension of TiO2 using simulated solar irradiation. The objective of the study was to compare their photocatalytic reactivity and to assess the influence of various parameters such as initial pesticide concentration, catalyst concentration and photonic flux on the photocatalytic degradation rate of MLN and LN. A comparative study of the photocatalytic degradation kinetics of both herbicides showed that these two compounds have a comparable reactivity with TiO2/simulated sun light. Under the operating conditions of this study, the photocatalytic degradation of MLN and LN followed pseudo first-order decay kinetics. The kobs values indicated an inverse dependence on the initial herbicide concentration and were fitted to the Langmuir-Hinshelwood equation. Photocatalytic degradation rates increased with TiO2 dosage, but overdoses did not necessarily increase the photocatalytic efficiency. The degradation rate of MLN increased with radiant flux until an optimum at 580 W m‑2 was reached and then decreased. Under these conditions, an electron-hole recombination was favored. Finally, the photocatalytic degradation rate depended on pH, where an optimum was found at a pH value close to the pH of the point of zero charge (pH = 6).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Niyaz A. Mir ◽  
Malik M. Haque ◽  
Abuzar Khan ◽  
Mohd. Muneer ◽  
Colin Boxall

The titanium dioxide (TiO2) photoassisted degradation of herbicide dinoseb has been examined in aqueous suspensions under UV light irradiation. The degradation kinetics were studied under various conditions such as substrate concentration, type of catalyst, catalyst dosage, pH, and light intensity as well as in presence of electron acceptors such as hydrogen peroxide, potassium bromate, and potassium persulphate under continuous air purging, and the degradation rates were found to be strongly influenced by these parameters. The Degussa P25 was found to be more efficient photocatalyst as compared to other photocatalysts tested. Dinoseb was found to degrade efficiently in acidic pH and all the electron acceptors studied enhanced the degradation rate. The results manifested that the photocatalysis of dinoseb followed pseudo-first-order kinetics. A qualitative study of the degradation products generated during the process was performed by GC-MS, and a degradation mechanism was proposed.


2016 ◽  
Vol 74 (6) ◽  
pp. 1283-1295 ◽  
Author(s):  
Raquel Vieira Busto ◽  
Maraisa Gonçalves ◽  
Lúcia Helena Gomes Coelho

This study aimed to investigate the use of red mud (RM) – a byproduct of aluminum production, as a photocatalyst, which was characterized physical-chemically and used in the photodegradation of the target compound bisphenol A (BPA). Chemical processing was performed in the RM (acid treatment, chemical reduction and calcination) to verify the most active catalyst. From the results obtained, a complete degradation kinetics of BPA was carried out using a synthetic matrix (BPA in deionized water) and a real matrix (BPA in wastewater) using natural RM/calcined and TiO2 for comparison. The results indicated the potential use of the RM/calcined, which was able to degrade between 88 and 100% of the pollutant in a synthetic sample. Tests on a real effluent sample resulted in degradation rates that ranged from 59 to 100% with chemical oxygen demand reductions of up to 23% using natural RM/calcined in comparison to TiO2. The blank system (irradiation of the solution without the use of a photocatalyst) and the natural RM/calcined one, resulted in reductions of the toxicity in the effluent sample (measured by EC20 using the marine bacteria Vibrio fischeri) of about 12 times, whereas the same treatment using TiO2 resulted in a toxicity reduction of only seven times. Within these results, the RM/calcined showed potential to be used in wastewater treatment in polishing processes.


2011 ◽  
Vol 110-116 ◽  
pp. 3795-3800 ◽  
Author(s):  
Xiao Zhi Wang ◽  
Wei Wei Yong ◽  
Wei Qin Yin ◽  
Ke Feng ◽  
Rong Guo

Expanded perlite (EP) modified titanium dioxide (TiO2) with different loading times were prepared by Sol-Gel method. Photocatalytic degradation kinetics of Rhodamine B (RhB) in polluted water by the materials (EP-nanoTiO2), as well as the effects of different loading times and the initial concentration of RhB on photocatalysis rate were examined. The catalytic activity of the regenerated photocatalyst was also tested. The results showed that photocatalyst modified three times with TiO2had the highest catalytic activity. Degradation ratio of RhB by EP-nanoTiO2(modified three times) under irradiation for 6 h were 98.0%, 75.6% and 63.2% for 10 mg/L, 20 mg/L and 30 mg/L, respectively.The photocatalyst activity has little change after the five times recycling, and the degradation rate of RhB decreased less than 8%. The reaction of photocatalysis for RhB with irradiation time can be expressed as first-order kinetic mode within the initial concentration range of RhB between 10mg/L and 30 mg/L. EP-nanoTiO2photocatalyst has a higher activity and stability to degrade RhB in aqueous solution.


2008 ◽  
Vol 88 (4) ◽  
pp. 711-719 ◽  
Author(s):  
Kenton J Hart ◽  
Brian G Rossnagel ◽  
Peiqiang Yu

The objective of this study was to compare the most widely grown barley cultivar in Canada, AC Metcalfe, a malting type barley, with five feed cultivars. Barley cultivars were grown at one location during 3 consecutive years and barley samples were milled to pass through a 1-mm screen and analysed to determine nutritive value. Additional samples were passed through a roller mill with a gap set at 1.12 mm and incubated ruminally for 0, 2, 4, 8, 12, 24, and 48 h in 3 dry Holstein cows fitted with rumen cannulae. The rate and extent of rumen digestion were estimated. AC Metcalfe had a higher (P < 0.001) concentration of NDF, and lower (P < 0.05) concentrations of non structural carbohydrates, starch, ADF, total digestible nutrients, and fermentable cell wall carbohydrates compared with the mean of the feed cultivars. The malting cultivar had a higher (P < 0.001) soluble DM fraction, lower (P < 0.05) CP and starch degradation rates, and a lower (P < 0.001) ruminally degradable starch concentration compared with the mean of the five feed cultivars. The results demonstrate that there are only small differences in terms of chemical composition and in situ degradation kinetics between the malting cultivar AC Metcalfe and the five feed cultivars of barley reported here. Key words: Barley, energy, protein, ruminants


2020 ◽  
Vol 30 (2) ◽  
pp. 161-172
Author(s):  
Christina Walters ◽  
Margaret B. Fleming ◽  
Lisa M. Hill ◽  
Emma J. Dorr ◽  
Christopher M. Richards

AbstractCharacterizing non-lethal damage within dry seeds may allow us to detect early signs of ageing and accurately predict longevity. We compared RNA degradation and viability loss in seeds exposed to stressful conditions to quantify relationships between degradation rates and stress intensity or duration. We subjected recently harvested (‘fresh’) ‘Williams 82’ soya bean seeds to moisture, temperature and oxidative stresses, and measured time to 50% viability (P50) and rate of RNA degradation, the former using standard germination assays and the latter using RNA Integrity Number (RIN). RIN values from fresh seeds were also compared with those from accessions of the same cultivar harvested in the 1980s and 1990s and stored in the refrigerator (5°C), freezer (−18°C) or in vapour above liquid nitrogen (−176°C). Rates of viability loss (P50−1) and RNA degradation (RIN⋅d−1) were highly correlated in soya bean seeds that were exposed to a broad range of temperatures [holding relative humidity (RH) constant at about 30%]. However, the correlation weakened when fresh seeds were maintained at high RH (holding temperature constant at 35°C) or exposed to oxidizing agents. Both P50−1 and RIN⋅d−1 parameters exhibited breaks in Arrhenius behaviour near 50°C, suggesting that constrained molecular mobility regulates degradation kinetics of dry systems. We conclude that the kinetics of ageing reactions at RH near 30% can be simulated by temperatures up to 50°C and that RNA degradation can indicate ageing prior to and independent of seed death.


2005 ◽  
Vol 71 (12) ◽  
pp. 7980-7986 ◽  
Author(s):  
David G. Wahman ◽  
Lynn E. Katz ◽  
Gerald E. Speitel

ABSTRACT The ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) was shown to degrade low concentrations (50 to 800 μg/liter) of the four trihalomethanes (trichloromethane [TCM], or chloroform; bromodichloromethane [BDCM]; dibromochloromethane [DBCM]; and tribromomethane [TBM], or bromoform) commonly found in treated drinking water. Individual trihalomethane (THM) rate constants ( \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(k_{1_{THM}}\) \end{document} ) increased with increasing THM bromine substitution, with TBM > DBCM > BDCM > TCM (0.23, 0.20, 0.15, and 0.10 liters/mg/day, respectively). Degradation kinetics were best described by a reductant model that accounted for two limiting reactants, THMs and ammonia-nitrogen (NH3-N). A decrease in the temperature resulted in a decrease in both ammonia and THM degradation rates with ammonia rates affected to a greater extent than THM degradation rates. Similarly to the THM degradation rates, product toxicity, measured by transformation capacity (Tc ), increased with increasing THM bromine substitution. Because both the rate constants and product toxicities increase with increasing THM bromine substitution, a water's THM speciation will be an important consideration for process implementation during drinking water treatment. Even though a given water sample may be kinetically favored based on THM speciation, the resulting THM product toxicity may not allow stable treatment process performance.


2012 ◽  
Vol 490-495 ◽  
pp. 3892-3896
Author(s):  
Yu Ping Jiang

To study the PCO of high-salinity organic wastewater, nano-sized TiO2 was used for PCO of MB in solutions with different pH values and high concentrations of Na2SO4 or NaCl. The rates of PCO were monitored by total organic carbon (TOC) measurement. The results showed that the degradation rates increased with increasing pH and decreased as the concentration of Na2SO4 or NaCl increased. The difference of degradation rates in Na2SO4 or NaCl aqueous solutions increased as the ion concentration increased. In the orthogonal experiments, the rates decreased remarkably under certain ratios of the ions concentration. The mechanisms were explored in some detail.


Sign in / Sign up

Export Citation Format

Share Document