Evaluation of the performance of full-scale packed saturators

2001 ◽  
Vol 43 (8) ◽  
pp. 67-74
Author(s):  
M. Valade ◽  
D. Nickols ◽  
J. Haarhoff ◽  
K. Barrett ◽  
H. Dunn

An evaluation of the performance of full-scale packed saturators was made. Measurements of saturator effluent air concentrations, saturator efficiency and precipitated are reported for both cold water and warm water operating conditions. Packed saturators were analyzed over a full range of operating pressures and loading rates. Measured results compared to predicted results based on a comprehensive model for the performance of packed saturators prove the model to be a useful tool in designing efficient and cost effective saturation systems.

2021 ◽  
Author(s):  
Marisela Rojas ◽  
Andrew Merlino ◽  
David Liney ◽  
Lawrence Obst ◽  
Matthew Kotteman ◽  
...  

Abstract This paper provides an overview of the qualification process of the highest power ESP ever installed into a hydrocarbon production system for artificial lift. The unit was selected and configured to interface with the existing deepwater offshore inflow and outflow systems without changes to the completion string or riser. The overall objective was to maximize the production capacity in terms of lift and flow rate given topsides power supply and running diameter constraints. The initial requirement was to identify a suitable supplier that could provide a hardware solution with a high technical readiness level. The team first reviewed the hydraulic performance of the existing production systems and modeled the potential for improvement with the new equipment configuration given an expected efficiency and power factor for the proposed motor. The ESP equipment was configured with components that had multiple qualification and validation testing requirements. The motor and associated high voltage connector were key differences from the existing systems. The pump design was modified to accommodate projected operating ranges including additional stages for the necessary head requirements. The new subcomponents were subjected to application specific testing to qualify the designs for operating conditions with multiple technical assurance reviews conducted by the end user and supplier company technical discipline authorities. Full scale flow testing at a dedicated facility (Gasmer) for Caisson gas/liquid separator ESP systems, and component installation stackup tests for fit and interfaces were completed to validate the performance in multiphase flow and identify hardware changes needed for the completion design and the intervention procedures. The qualification program was completed successfully, and a unit was deployed without incident, into a deepwater mudline caisson that has since been operated for live hydrocarbon production. The performance has met expectations and the unit efficiency and demonstrated capacity will allow for increased production. The use of a detailed qualification program that includes focused testing for individual system components and validation through full scale system integration testing ensures flawless deployment of technology improvements for critical well applications. The system is the highest power ESP for hydrocarbon production. It includes a novel completion design to accommodate the effective running diameter for the motor. The use of a unique shroud design to stay within running diameter constraints allowed for minor modifications to the completion string design without system changes to the riser or caisson. This was both cost effective and reduced the time needed for development and manufacturing.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 197-208 ◽  
Author(s):  
A. J. Ware ◽  
M. B. Pescod

A full-scale combined anaerobic random packed-cage and aerobic disc rotating biological contactor was operated under fluctuating organic loading rates treating a brewery wastewater. The robustness of the combined system in coping with greatly fluctuating influent COD's and pH 's is demonstrated. Excessive turbulence along with the variable operating conditions are identified as the major reasons for the failure to establish a significant anaerobic biofilm attached to the media. The importance of suspended sludge and its retention within the anaerobic RBC is demonstrated by the changing biological population in the suspended solids.


2013 ◽  
Vol 69 (5) ◽  
pp. 915-922 ◽  
Author(s):  
F. Veuillet ◽  
S. Lacroix ◽  
A. Bausseron ◽  
E. Gonidec ◽  
J. Ochoa ◽  
...  

ANITA™Mox is a Veolia process using moving-bed biofilm reactor (MBBR) technology tested and validated in full-scale for energy- and cost-effective autotrophic N-removal from sidestream effluent using anammox (ANaerobic AMMonium OXidation) bacteria. In order to increase the ANITA™Mox process performances under different operating conditions (e.g. mainstream and sidestream application), substrate transport and accessibility inside the biofilm must be enhanced. In this work, (i) two laboratory scale biofilm ANITA™Mox reactors were operated using different configurations (IFAS – integrated fixed-film activated sludge – and MBBR) and (ii) the distribution of the anammox (AnAOB) and ammonia-oxidizing bacteria (AOB) in the suspended sludge and the biofilm was characterized using molecular tools (qPCR). This study showed that in IFAS configuration, the ANITA™Mox process achieved very high N-removal rate (up to 8 gN/m².d), which was three to four times higher than that achieved in the pure MBBR mode. The high concentration of suspended solids (mixed liquor suspended solids (MLSS)) in the bulk obtained within the IFAS mode induces a very efficient bacterial distribution between the AOB and AnAOB population. AnAOB activity mainly occurs in the biofilm (96% of total AnAOB in the reactor), whereas nitritation by AOB mostly takes place in the suspended phase (93% of total AOB). This spatial distribution observed in the IFAS reactor results from a natural selection due to more easily substrate accessibility for AOB in the bulk (NH4+, O2) creating higher nitrite concentration in the bulk liquid compare to pure MBBR mode. The efficient control of MLSS level in the IFAS reactor is a key parameter to enhance the nitrite production by AOB and increase the substrate availability in the AnAOB-enriched biofilm leading to higher N-removal rate. These promising results obtained at laboratory scale have been further confirmed in on-going full-scale IFAS ANITA™Mox trials opening new roads for the widespread application of a very compact and robust ANITA™Mox process for sidestream but also mainstream cost-effective N-removal.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Author(s):  
Q. Kim ◽  
S. Kayali

Abstract In this paper, we report on a non-destructive technique, based on IR emission spectroscopy, for measuring the temperature of a hot spot in the gate channel of a GaAs metal/semiconductor field effect transistor (MESFET). A submicron-size He-Ne laser provides the local excitation of the gate channel and the emitted photons are collected by a spectrophotometer. Given the state of our experimental test system, we estimate a spectral resolution of approximately 0.1 Angstroms and a spatial resolution of approximately 0.9 μm, which is up to 100 times finer spatial resolution than can be obtained using the best available passive IR systems. The temperature resolution (<0.02 K/μm in our case) is dependent upon the spectrometer used and can be further improved. This novel technique can be used to estimate device lifetimes for critical applications and measure the channel temperature of devices under actual operating conditions. Another potential use is cost-effective prescreening for determining the 'hot spot' channel temperature of devices under normal operating conditions, which can further improve device design, yield enhancement, and reliable operation. Results are shown for both a powered and unpowered MESFET, demonstrating the strength of our infrared emission spectroscopy technique as a reliability tool.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 449-460 ◽  
Author(s):  
W. Giger ◽  
M. Ahel ◽  
M. Koch ◽  
H. U. Laubscher ◽  
C. Schaffner ◽  
...  

Effluents and sludges from several municipal sewage treatment plants in Switzerland were analyzed for nonylphenol polyethoxylates (NPnEO, n=3-20), nonylphenol mono- and diethoxylate (NPlEO, NP2EO), corresponding nonylphenoxy carboxylic acids (NP1EC, NP2EC) and nonylphenol (NP). These chemicals derive from nonionic surfactants of the NPnEO-type, and specific analitical techniques were used to study their behaviour during mechanical-biological sewage and subsequent sludge treatment. The parent NPnEO-surfactants, with concentrations in raw and mechanically treated sewage from 400-2200 mg/m3, were relatively efficiently removed by the activated sludge treatment. The abundances of the different metabolites varied depending on treatment conditions. The refractory nature of NPl/2EO, NP and NPl/2EC was recognized. Both biotransformations and physico-chemical processes determine the behaviour and fate of nonylphenolic substances in sewage treatment. Nitrilotriacetate (NTA) was found in primary effluents at concentrations between 430 and 1390 mg/m3. The various treatment plants showed different removal efficiencies for NTA depending on the operating conditions. Activated sludge treatment with low sludge loading rates and nitrifying conditions removed NTA with efficiencies between 95 and 99%. High sludge loading caused a decrease in NTA removal efficiencies from 70% to 39%.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1389-1402 ◽  
Author(s):  
R. Zaloum

Deviations from design expectations appear to stem from views which assume that a unique response should result from a given set of operating conditions. The results of this study showed that two systems operating at equal organic loads or F/M ratios and at the same SRT do not necessarily give equal responses. This deviation was linked to the manner in which the HRT and influent COD are manipulated to obtain a constant or uniform load, and to subtle interactions between influent COD, HRT and SRT on the biomass and effluent responses. Increases of up to 200% in influent COD from one steady level to the next did not significantly influence the effluent VSS concentration while an effect on filtered COD was observed for increases as low as 20%. Effluent TKN and filtered COD correlated strongly with the operating MLVSS while phosphorus residual depended on the operating SRT and the organic load removed. These results point to the inadequacy of traditional models to predict effluent quality and point to the need to consider these effects when developing simulation techniques or computer assisted expert systems for the control of waste treatment plants.


Author(s):  
C. J. Hooke

In heavily loaded, piezoviscous contacts the surface roughness tends to be flattened inside the conjunction by any relative sliding of the surfaces. However, before it is flattened, the roughness affects the inlet to the contact, producing clearance variations there. These variations are then convected through the contact, at the entrainment velocity, producing a clearance distribution that differs from the original surface. The present paper explores this behaviour and establishes how the amplitude of the convected clearance varies with wavelength and operating conditions. It is shown that the primary influence is the ratio of the wavelength to the inlet length of the conjunction. Where this ratio is large, the roughness is smoothed and there is little variation in clearance under the conjunction. Where the ratio is small, significant variations in clearance may occur but the precise amplitude and phasing depend on the ratio of slide to roll velocities and on the value of a piezoviscous parameter, c. The numerical results agree closely with existing solutions but extend these to cover the full range of operating conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Naef A. A. Qasem ◽  
Ramy H. Mohammed ◽  
Dahiru U. Lawal

AbstractRemoval of heavy metal ions from wastewater is of prime importance for a clean environment and human health. Different reported methods were devoted to heavy metal ions removal from various wastewater sources. These methods could be classified into adsorption-, membrane-, chemical-, electric-, and photocatalytic-based treatments. This paper comprehensively and critically reviews and discusses these methods in terms of used agents/adsorbents, removal efficiency, operating conditions, and the pros and cons of each method. Besides, the key findings of the previous studies reported in the literature are summarized. Generally, it is noticed that most of the recent studies have focused on adsorption techniques. The major obstacles of the adsorption methods are the ability to remove different ion types concurrently, high retention time, and cycling stability of adsorbents. Even though the chemical and membrane methods are practical, the large-volume sludge formation and post-treatment requirements are vital issues that need to be solved for chemical techniques. Fouling and scaling inhibition could lead to further improvement in membrane separation. However, pre-treatment and periodic cleaning of membranes incur additional costs. Electrical-based methods were also reported to be efficient; however, industrial-scale separation is needed in addition to tackling the issue of large-volume sludge formation. Electric- and photocatalytic-based methods are still less mature. More attention should be drawn to using real wastewaters rather than synthetic ones when investigating heavy metals removal. Future research studies should focus on eco-friendly, cost-effective, and sustainable materials and methods.


Author(s):  
Marco Miglietta ◽  
Nicolò Damiani ◽  
Gabriele Guerrini ◽  
Francesco Graziotti

AbstractTwo full-scale building specimens were tested on the shake-table at the EUCENTRE Foundation laboratories in Pavia (Italy), to assess the effectiveness of an innovative timber retrofit solution, within a comprehensive research campaign on the seismic vulnerability of existing Dutch unreinforced masonry structures. The buildings represented the end-unit of a two-storey terraced house typical of the North-Eastern Netherlands, a region affected by induced seismicity over the last few decades. This building typology is particularly vulnerable to earthquake excitation due to lack of seismic details and irregular distribution of large openings in masonry walls. Both specimens were built with the same geometry. Their structural system consisted of cavity walls, with interior load-bearing calcium-silicate leaf and exterior clay veneer, and included a first-floor reinforced concrete slab, a second-floor timber framing, and a roof timber structure supported by masonry gables. A timber retrofit was designed and installed inside the second specimen, providing an innovative sustainable, light-weight, reversible, and cost-effective technique, which could be extensively applied to actual buildings. Timber frames were connected to the interior surface of the masonry walls and completed by oriented strands boards nailed to them. The second-floor timber diaphragm was stiffened and strengthened by a layer of oriented-strand boards, nailed to the existing joists and to additional blocking elements through the existing planks. These interventions resulted also in improved wall-to-diaphragm connections with the inner leaf at both floors, while steel ties were added between the cavity-wall leaves. The application of the retrofit system favored a global response of the building with increased lateral capacities of the masonry walls. This paper describes in detail the bare and retrofitted specimens, compares the experimental results obtained through similar incremental dynamic shake-table test protocols up to near-collapse conditions, and identifies damage states and damage limits associated with displacements and deformations.


Sign in / Sign up

Export Citation Format

Share Document